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1 The Differential Calculus of Functions of
Several Variables

1.1 Linear Transforms

Recall that a mapping A of a vector space X into a vector space Y is said
to be a linear operator if

A (x1 + x2) = Ax1 +Ax2, A(cx1) = cA(x1)

for all x1, x2 ∈ X and all scalars c. Note that one often writes Ax instead
of A(x) if A is linear.

Linear operators of X into X are often called linear transformations on
X. If A is a linear transformation on X which (i) is one-to-one and (ii) maps
X onto X, we say that A is invertible. In this case we can define an operator
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A−1 on X by requiring that A−1(Ax) = x for all x ∈ X. It is trivial to verify
that we then also have A

(
A−1x

)
= x, for all x ∈ X, and that A−1 is linear.

Theorem. A linear operator A on a finite-dimensional vector space X is
one-to-one if and only if the range of A is all of X.

Let L(X,Y ) be the set of all linear transformations of the vector space
X into the vector space Y. Instead of L(X,X), we shall simply write L(X)

If A1, A2 ∈ L(X,Y ) and if c1, c2 are scalars, define c1A1 + c2A2 by

(c1A1 + c2A2) (x) = c1A1x+ c2A2x (x ∈ X)

It is then clear that c1A1 + c2A2 ∈ L(X,Y ).

If X,Y, Z are vector spaces, and if A ∈ L(X,Y ) and B ∈ L(Y, Z), we
define their product BA to be the composition of A and B :

(BA)x = B(Ax) (x ∈ X)

Then BA ∈ L(X,Z). Note that BA need not be the same as AB, even if
X = Y = Z.

We equip the Euclid space Rn with the inner product 〈·, ·〉 defined by

〈x, y〉 ≡ x · y :=

n∑
k=1

xkyk , for all x, y ∈ Rn .

This inner product induce a norm ‖ · ‖ on Rn defined by

‖x‖ :=
√
〈x, x〉 =

(
n∑

k=1

x2k

) 1
2

, for all x ∈ Rn .

For A ∈ L (Rn,Rm) , define the (operator) norm ‖A‖ of A to be the supre-
mum of all numbers ‖Ax‖, where x ranges over all vectors in Rn with
‖x‖ ≤ 1. In other words,

‖A‖ := sup
∥x∥≤1

‖Ax‖ .

Observe that the inequality

‖Ax‖ ≤ ‖A‖‖x‖ , for all x ∈ Rn .

Also, if λ is such that ‖Ax‖ ≤ λ‖x‖ for all x ∈ Rn then ‖A‖ ≤ λ. Moreover
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(i) If A ∈ L (Rn,Rm) , then ‖A‖ < ∞, and A is a uniformly continuous
mapping of Rn into Rm.

(ii) If A,B ∈ L (Rn,Rm) and c is a scalar, then

‖A+B‖ ≤ ‖A‖+ ‖B‖, ‖cA‖ = |c|‖A‖

With the distance between A and B defined as ‖A − B‖, L (Rn,Rm)

is a complete metric space.

(iii) If A ∈ L (Rn,Rm) and B ∈ L
(
Rm,Rk

)
, then

‖BA‖ ≤ ‖B‖‖A‖ .

Since we now have metrics in the spaces L (Rn,Rm) , the concepts of
open set, continuity, etc., make sense for these spaces. Our next theorem
utilizes these concepts.

Theorem 1.1. LetGLn(R) be the set of all invertible linear transformations
on Rn. Then the following statements hold.

(i) If A ∈ GLn(R), B ∈ L (Rn) , and

‖B −A‖ < 1

‖A−1‖
,

then B ∈ GLn(R).

(ii) GLn(R) is an open subset of L (Rn) , and the mapping A → A−1

is continuous on GLn(R). (This mapping is also obviously a 1 − 1

mapping of GLn(R) onto GLn(R), which is its own inverse, so the
inverse mapping is indeed a homeomorphism).

Proof. If A = I, it’s easy to check that

B−1

(
=

I

I − (I −B)

)
=

∞∑
m=0

(I −B)m .
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Similarly, in general case,

B−1

(
=

A−1

I −A−1(A−B)

)
=

∞∑
m=0

A−(m+1)(A−B)m . (1.1)

So (i) holds. Clearly (i) implies that GLn(R) is open. To show A 7→ A−1

is continuous on GLn(R), observe that for fixed A ∈ GLn(R), and B ∈
GLn(R),

B−1 −A−1 = B−1(A−B)A−1 .

Hence ∥∥B−1 −A−1
∥∥ ≤

∥∥B−1
∥∥ ‖A−B‖

∥∥A−1
∥∥ .

It follows from (1.1) that

‖B−1‖ ≤ ‖A−1‖
1− ‖A−1(A−B)‖

.

This establishes the continuity assertion made in (ii), since∥∥B−1 −A−1
∥∥→ 0 as ‖B −A‖ → 0 .

Suppose {x1, . . . , xn} and {y1, . . . , ym} are bases of finite dimensional
vector spaces X and Y , respectively. Then every A ∈ L(X,Y ) determines a
set of numbers aij such that

Axj =
m∑
i=1

aijyi (1 ≤ j ≤ n) .

It is convenient to visualize these numbers in a rectangular array of m rows
and n columns, called an m by n matrix:

[A] =


a11 a12 · · · a1n

a21 a22 · · · a2n

· · · · · · · · · · · ·
am1 am2 · · · amn

 .
Observe that the coordinates aij of the vector Axj (with respect to the basis
{y1, . . . , ym}) appear in the j th column of [A]. The vectors Axj are therefore
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sometimes called the column vectors of [A]. With this terminology, the range
of A is spanned by the column vectors of [A].

If x =
∑n

1 cjxj , the linearity of A shows that

Ax =
m∑
i=1

 n∑
j=1

aijcj

 yi (1.2)

Thus the coordinates of Ax are
∑n

1 aijcj . Suppose next that an m by n

matrix is given, with real entries (aij). If A is then defined by (1.2), it is
clear that A ∈ L(X,Y ) and that [A] is the given matrix. Thus there is a
natural one-to-one correspondence between L(X,Y ) and Mm×n(R), the set
of all real m by n matrices. We emphasize, though, that [A] depends not
only on A but also on the choice of bases in X and Y . The same A may
give rise to many different matrices if we change bases, and vice versa. We
shall not pursue this observation any further, since we shall usually work
with fixed bases.

Finally, suppose {x1, . . . , xn} and {y1, . . . , ym} are standard bases of Rn

and Rm, and A is given by (1.2). The Schwarz inequality shows that

‖Ax‖2 =
m∑
i=1

 n∑
j=1

aijcj

2

≤
m∑
i=1

 n∑
j=1

a2ij ·
n∑

j=1

c2j

 =
∑

1≤i≤m
1≤j≤n

a2ij‖x‖2 .

Thus

‖A‖ ≤

 ∑
1≤i≤m
1≤j≤n

a2ij


1/2

.

We see that if the matrix elements aij are continuous functions of a pa-
rameter, then the same is true of A. In fact, the converse is true by the
equivalence of the norms on finite dimensional vector space.

1.2 The Differential of a Function of Several Variables

1.2.1. Differentiability In order to arrive at a definition of the “deriva-
tive” of a function whose domain is Rn (or an open subset of Rn ), let us
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take another look at the familiar case n = 1, and let us see how to interpret
the derivative in that case in a way which will naturally extend to n > 1.

If f is a real function with domain (a, b) ⊂ R1 and if x ∈ (a, b), then
f ′(x) is usually defined to be the real number

lim
h→0

f(x+ h)− f(x)

h

provided, of course, that this limit exists. Thus

f(x+ h)− f(x) = f ′(x)h+ r(h) (1.3)

where the ”remainder” r(h) is small, in the sense that

lim
h→0

r(h)

h
= 0 .

Note that (1.3) expresses the difference f(x + h) − f(x) as the sum of the
linear function that takes h to f ′(x)h, plus a small remainder.

We can therefore regard the derivative of f at x, not as a real number,
but as the linear operator on R1 that takes h to f ′(x)h. Observe that
every real number α gives rise to a linear operator on R1 the operator in
question is simply multiplication by α. Conversely, every linear function that
carries R1 to R1 is multiplication by some real number. It is this natural
1-1 correspondence between R1 and L

(
R1
)

which motivates the preceding
statements.

Let us next consider a function f that maps (a, b) ⊂ R1 into Rm. In that
case, f ′(x) was defined to be that vector y ∈ Rm (if there is one) for which

lim
h→0

f(x+ h)− f(x)

h
− y = 0 .

We can again rewrite this in the form

f(x+ h)− f(x) = hy + r(h) , (1.4)

where r(h)/h→ 0 as h→ 0. The main term on the right side of (1.4) is again
a linear function of h. Every y ∈ Rm induces a linear operator of R1 into
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Rm, by associating to each h ∈ R1 the vector hy ∈ Rm. This identification of
Rm with L

(
R1,Rm

)
allows us to regard f ′(x) as a member of L

(
R1,Rm

)
.

Thus, if f is a differentiable mapping of (a, b) ⊂ R1 into Rm, and if
x ∈ (a, b) then f ′(x) is the linear transformation of R1 into Rm that satisfies

lim
h→0

f(x+ h)− f(x)− f ′(x)h

h
= 0 ,

or, equivalently,

lim
h→0

‖f(x+ h)− f(x)− f ′(x)h‖
|h|

= 0 .

We are now ready for the case n > 1.

Definition 1.1. A function f : E → Rm defined on a set E ⊂ Rn is
differentiable at the point x ∈ E, which is a limit point of E, if there exists
a linear mapping A ∈ L(Rn,Rm) such that

lim
h→0

x+h∈E

‖f(x+ h)− f(x)−Ah‖
‖h‖

= 0 . (1.5)

The linear mapping A is called the differential, tangent mapping, or deriva-
tive mapping of the function f : E → Rn at the point x ∈ E, and is usually
denoted by the symbols df(x), Df(x), or f ′(x).

A glance at (1.5) shows that f is continuous at any point at which f is
differentiable. Moreover, there are some remarks of this definition.

Remark 1.1. There is an obvious uniqueness problem which has to be
settled before we go any further. Suppose E and f are as in the definition
x ∈ E, and (1.5) holds with A = A1 and with A = A2. Then A1 = A2.
Indeed, if B = A1 −A2, the inequality

‖Bh‖ ≤ ‖f(x+ h)− f(x)−A1h‖+ ‖f(x+ h)− f(x)−A2h‖ .

shows that ‖Bh‖/‖h‖ → 0 as h→ 0. Hence ‖B‖ = 0, which implies B = 0.
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Remark 1.2. The relation (1.5) can be rewritten in the form

f(x+ h)− f(x) = f ′(x)h+ r(h) , (1.6)

where the remainder r(h) = o(h) as h→ 0, x+ h ∈ E; in other words

lim
h→0

x+h∈E

‖r(h)‖
‖h‖

= 0 .

In the future we shall mostly be dealing with the case when E is a open set
in Rn. So if x ∈ E, then for any sufficiently small displacement h from x the
point x+h will also belong to E. We may interpret (1.6) by saying that for
fixed x and small h, the left side of (1.6) is approximately equal to f ′(x)h,
that is, to the value of a linear transformation applied to h.

Remark 1.3. If f is differentiable at every x ∈ E, (so every point in E is
a limit point of E, for example E is open), we say that f is differentiable in
E. Then For every x ∈ E, f ′(x) is linear transformation of Rn into Rm. But
f ′ is also a function: f ′ maps E into L (Rn,Rm).

Remark 1.4. We remark that the differential is defined on the displace-
ments h from the point x ∈ E. To emphasize this, we attach a copy of the
vector space Rn to the point x ∈ Rn and denote it TxRn. The space TxRn

can be interpreted as a set of vectors attached at the point x ∈ Rn. The
vector space TxRn is called the tangent space to Rn at x ∈ Rn.

The origin of this terminology will be explained below. The value of the
differential on a vector h ∈ TxRn is the vector f ′(x)h ∈ Tf(x)Rm attached
to the point f(x) and approximating the increment f(x + h) − f(x) of the
function caused by the increment h of the argument x. Thus df(x) or f ′(x)
is a linear transformation f ′(x) : TxRn → Tf(x)Rm.

Example 1.1. We have defined derivatives of functions carrying Rn to Rm

to be linear operators of Rn into Rm. What is the derivative of such a linear
operator? The answer is very simple.

If A ∈ L (Rn,Rm) and if x ∈ Rn, then

A′(x) = A . (1.7)
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Note that x appears on the left side of (1.7) but not on the right. Both sides
of (1.7) are members of L (Rn,Rm) , whereas Ax ∈ Rm. The proof of (1.7)
is a triviality, since

A(x+ h)−Ax = Ah

by the linearity of A. With f(x) = Ax, the numerator in (1.5) is thus 0 for
every h ∈ Rn. In (1.6), r(h) = 0.

1.2.2. Partial Derivatives We again consider a function f that maps an
open set E ⊂ Rn into Rm. Let {e1, . . . , en} and {u1, . . . , um} be the standard
bases of Rn and Rm. We define the partial derivative or partial differential
of f at x by

∂jf(x) = lim
t→0
t∈R

f (x+ tej)− f(x)

t

provided the limit exists in Rm. Equivalently, ∂jf(x) is the linear mapping
in L(R,Rm) so that

f(x+ tej)− f(x) = ∂jf(x)t+ o(t) as t→ 0 , t ∈ R .

Writing f (x1, . . . , xn) in place of f(x), we see that ∂jf is the derivative
mapping of f with respect to xj , keeping the other variables fixed. The
notation

∂f

∂xj

is therefore often used in place of ∂jf . The components of f are the real
functions f1, . . . , fm defined by

f(x) =
m∑
i=1

fi(x)ui (x ∈ E) (1.8)

Similarly partial derivative of each component fi : E → R is defined by

(∂jfi) (x) = lim
t→0
t∈R

fi (x+ tej)− fi(x)

t
.

Remark 1.5. In many cases where the existence of a derivative is sufficient
when dealing with functions of one variable. However, continuity or at least
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boundedness of the partial derivatives is needed for functions of several
variables. For example, the functions f and g described in Exercise 1.1
are not continuous, although their partial derivatives exist at every point of
R2. Even for continuous functions, the existence of all partial derivatives
does not imply differentiability, see Exercise 1.2 and Theorem 1.3.

However, if f is known to be differentiable at a point x, then its partial
derivatives exist at x, and they determine the linear transformation f ′(x)

completely:

Theorem 1.2. Suppose f maps an open set E ⊂ Rn into Rm, and f is
differentiable at a point x ∈ E. Then the partial derivatives (∂jfi) (x) exist,
and

f ′(x)ej =

m∑
i=1

(∂jfi) (x)ui (1 ≤ j ≤ n) . (1.9)

Here, {e1, . . . , en} and {u1, . . . , um} are the standard bases of Rn and Rm.

Proof. Fix j. Since f is differentiable at x,

f (x+ tej)− f(x) = f ′(x) (tej) + r (tej) ,

where ‖r (tej)‖ /t→ 0 as t→ 0. The linearity of f ′(x) shows therefore that

lim
t→0

f (x+ tej)− f(x)

t
= f ′(x)ej .

If we now represent f in terms of its components, then

lim
t→0

m∑
i=1

fi (x+ tej)− fi(x)

t
ui = f ′(x)ej .

It follows that each quotient in this sum has a limit, as t→ 0, so that each
(∂jfi) (x) exists, and then the desired result follows.

Let [f ′(x)] be the matrix that represents f ′(x) with respect to our stan-
dard bases. Then f ′(x)ej is the j th column vector of [f ′(x)] , and (1.9)
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shows therefore that the number (∂jfi) (x) occupies the spot in the i th row
and j th column of [f ′(x)] . Thus

[
f ′(x)

]
= [∂jfi(x)] =


∂1f1(x) · · · ∂nf1(x)

... · · ·
...

∂1fm(x) · · · ∂nfm(x)

 .
The matrix [f ′(x)] is sometimes called the Jacobi matrix of f at x. When
it is a square matrix, we say det [f ′(x)] is the Jacobian of f at x.

Since the matrix [f ′(x)] and the linear operator f ′(x) are essentially the
same thing, so we will not distinguish between the two, both are denoted by
f ′(x). Then, if h =

∑n
1 hjej is any vector in Rn, by (1.9) we have

f ′(x)h =


∂1f1(x) · · · ∂nf1(x)

... · · ·
...

∂1fm(x) · · · ∂nfm(x)



h1
...
hn

 .

Definition 1.2. A differentiable mapping f of an open set E ⊂ Rn into Rm

is said to be continuously differentiable in E if f ′ is a continuous mapping
of E into L (Rn,Rm).

More explicitly, it is required that to every x ∈ E and to every ε > 0

corresponds a δ > 0 such that∥∥f ′(y)− f ′(x)
∥∥ < ε

if y ∈ E and ‖x− y‖ < δ. If this is so, we also say that f is a C1-mapping,
or that f ∈ C1(E,Rm).

Theorem 1.3. Suppose f maps an open set E ⊂ Rn into Rm. Then f ∈
C1(E,Rm) if and only if the partial derivatives ∂jfi exist and are continuous
on E for all 1 ≤ i ≤ m, 1 ≤ j ≤ n.

Proof. Assume first that f ∈ C1(E,Rm). By (1.9), for each 1 ≤ i ≤ m,
1 ≤ j ≤ n and x ∈ E,

∂jfi(x) = 〈f ′(x)ej , ui〉 .
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Hence
∂jfi(y)− ∂jfi(x) = 〈

[
f ′(y)− f ′(x)

]
ej , ui〉 ,

and since ‖ui‖ = ‖ej‖ = 1, it follows that

‖(∂jfi) (y)− (∂jfi) (x)‖ ≤
∥∥[f ′(y)− f ′(x)

]
ej
∥∥

≤
∥∥f ′(y)− f ′(x)

∥∥ .
Thus ∂jfi is continuous.

For the converse , fix x ∈ E and ε > 0. Since E is open, there is an open
ball B(x, r) ⊂ E, with center at x and radius r, and the continuity of the
functions ∂jfi shows that r can be chosen so that for all ‖y − x‖ < r and
for all i, j,

‖∂jfi(y)− ∂jfi(x)‖ <
ε

mn
. (1.10)

Suppose h =
∑n

1 hjej , ‖h‖ < r, put v0 = 0, and vk = h1e1 + · · · + hkek for
1 ≤ k ≤ n. Then

fi(x+ h)− fi(x) =
n∑

k=1

[fi (x+ vk)− fi (x+ vk−1)] . (1.11)

Since ‖vk‖ ≤ ‖h‖ < r for 1 ≤ k ≤ n and since B(x, r) is convex, the segments
with end points x+ vk−1 and x+ vk lie in B(x, r). Since vk = vk−1 + hkek,

the mean value theorem shows that the k th summand (1.11) is equal to

hk ∂kfi (x+ vk−1 + θkhkek)

for some θk ∈ (0, 1), and this differs from hk ∂kfi(x) by less than |hk|ε/(mn)
using (1.10). By (1.11) it follows that, for all h such that ‖h‖ < r,∣∣∣∣∣∣fi(x+ h)− fi(x)−

n∑
j=1

hj (∂jfi) (x)

∣∣∣∣∣∣ ≤ 1

nm

n∑
j=1

|hj | ε ≤
1

m
‖h‖ε ,

and hence ∥∥∥∥∥∥f(x+ h)− f(x)−
m∑
i=1

n∑
j=1

hj (∂jfi) (x)ui

∥∥∥∥∥∥ ≤ ‖h‖ε .
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This says that f is differentiable at x. The matrix [f ′i(x)] consists of the row
(∂1fi) (x), . . . , (∂nfi) (x); and since ∂1fi, . . . , ∂nfi are continuous functions
on E, it’s easy to see that f ∈ C1(E,Rm).

Exercise 1.1. Define f and g on R2 by: f(0, 0) = g(0, 0) = 0, f(x, y) =

xy2/
(
x2 + y4

)
, g(x, y) = xy2/

(
x2 + y6

)
if (x, y) 6= (0, 0). Prove that f is

bounded on R2, that g is unbounded in every neighborhood of (0, 0), and
that f is not continuous at (0,0); nevertheless, the restrictions of both f and
g to every straight line in R2 are continuous!

Exercise 1.2. Define f(0, 0) = 0 and

f(x, y) =
x3

x2 + y2
if (x, y) 6= (0, 0)

(i) Prove that ∂1f and ∂2f are bounded functions in R2. (Hence f is
continuous.)

(ii) Let u be any unit vector in R2. Show that the directional derivative
(∂uf) (0, 0) exists, and that its absolute value is at most 1.

(iii) Let γ be a differentiable mapping of R1 into R2, with γ(0) = (0, 0)

and ‖γ′(0)‖ > 0. Put g(t) = f(γ(t)) and prove that g is differentiable
for every t ∈ R1. If γ ∈ C1, prove that g ∈ C1.

(iv) In spite of this, prove that f is not differentiable at (0, 0).

1.2.3. The Basic Laws of Differentiation Next, we will discuss sev-
eral basic laws of differentiation. First of all, the operation of differentiation
is linear, which is easy to prove and hence we omit the proof.

Proposition 1.4 (Linearity). If the functions f : E → R and g : E → R,
defined on a set E ⊂ Rm are differentiable at the point x0 ∈ E, then a
linear combination of them (αf + βg) : E → Rm is also differentiable at
that point, and the following equality holds:

(αf + βg)′ (x0) =
(
αf ′ + βg′

)
(x0) .
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If the functions in question are real-valued, the operations of multiplica-
tion and division (when the denominator is not zero) can also be performed.
We have then the following theorem. The proof of this theorem is the same
as the proof in the case that E ⊂ R is an interval, so we omit the details.

Proposition 1.5. If the functions f : E → R and g : E → R, defined
on a set E ⊂ Rn are differentiable at the point x0 ∈ E, then the following
statements hold.

(i) Their product fg is differentiable at x0 and

(f · g)′(x0) = g(x0)f
′(x0) + f(x0)g

′(x0) .

(ii) Their quotient f/g is differentiable at x0 if g(x0) 6= 0, and(
f

g

)′
(x0) =

1

g2(x0)

[
g(x0)f

′(x0)− f(x0)g
′(x0)

]
.

The next proposition asserts that mutually inverse differentiable map-
pings have mutually inverse derivative mappings at corresponding points.

Proposition 1.6 (Differentiation of an Inverse Mapping). Let f : U(x0) →
V (y0) be a mapping of a open neighborhood U(x0) ⊂ Rn of the point x0 onto
a open neighborhood V (y0) ⊂ Rn of the point y0 = f(x0). Assume that f is
continuous at the point x0 and has an inverse mapping f−1 : V (y0) → U(x0)

that is continuous at the point y0. If the mapping f is differentiable at x0
and the derivative mapping f ′(x0) ∈ L(Rn) has an inverse f ′(x0)−1, then
the mapping f−1 : V (y0) → U(x0) is differentiable at the point y0 = f(x0),

and the following equality holds:(
f−1

)′
(y0) = f ′(x0)

−1 .

Proof. Take k ∈ Rn for which y0 + k ∈ V (y0) and put

∆f−1(y0; k) = f−1(y0 + k)− f−1(y0) = f−1(y0 + k)− x0 .

15



Observe that

k = y0 + k − y0 = f(f−1(y0 + k))− f(f−1(y0))

= f(x0 +∆f−1(y0; k))− f(x0)

= f ′(x0)∆f
−1(y0; k) + r(∆f−1(y0; k)) ,

where r(h) := f(x0 + h)− f(x0)− f ′(x0)h = o(h) as h→ 0. Then we get

∆f−1(y0; k) = f ′(x0)
−1k + f ′(x0)

−1r(∆f−1(y0; k)) . (1.12)

We have only to show that

r(∆f−1(y0; k)) = o(k) as k → 0 .

To this end, it suffices to show that ∆f−1(y0; k) = O(k) as k → 0, that is

lim sup
k→0

‖∆f−1(y0; k)‖
‖k‖

<∞ .

By assumption, f−1 is continuous at y0 so ∆f−1(y0; k) → 0 as k → 0. By
(1.12), since r(h) = o(h), for k with sufficiently small norm, we have

‖f ′(x0)−1r(∆f−1(y0; k))‖ ≤ 1

2
‖∆f−1(y0; k)‖ ,

and hence

‖∆f−1(y0; k)‖ ≤ ‖f ′(x0)−1‖‖k‖+ ‖f ′(x0)−1r(∆f−1(y0; k))‖

≤ ‖f ′(x0)−1‖‖k‖+ 1

2
‖∆f−1(y0; k)‖ .

So ‖∆f−1(y0; k)‖ ≤ 2‖f ′(x0)−1‖‖k‖ for k with sufficiently small norm, as
desired. We now complete the proof.

Example 1.2 (Polar coordinates in R2). Let f : (0,∞)× (0, 2π) → R2\{0}
be given by f(r, φ) = (r cosφ, r sinφ) =: (x, y). Let g be the inverse function
to f. From

f ′(r, φ) =

(
cosφ −r sinφ
sinφ r cosφ

)
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we deduce that det[f ′(r, φ)] = r > 0. Then

g′(x, y) = f ′(r, φ)−1 =

(
cosφ sinφ

−1
r sinφ 1

r cosφ

)

=

 x√
x2+y2

y√
x2+y2

− y
x2+y2

x
x2+y2

 .

We now extend the chain rule to the present situation.

Proposition 1.7 (The Chain Rule). Suppose f maps E ⊂ Rn into Rm and
f is differentiable at x0 ∈ E. Suppose g maps a set F ⊂ Rm containing
f(E) into Rk, and g is differentiable at f (x0) . Then the mapping g ◦ f of
E into Rk is differentiable at x0, and

(g ◦ f)′ (x0) = g′ (f (x0)) f
′ (x0) . (1.13)

On the right side of (1.13) we have the product (composition) of two linear
operators.

Proof. Put y0 = f (x0), and define the error term u(h), v(k) by

f (x0 + h)− f (x0) = f ′(x0)h+ u(h) ,

g (y0 + k)− g (y0) = g′(y0)k + v(k) ,

for all h ∈ Rn and k ∈ Rm with x0 + h ∈ E and y0 + k ∈ F , respectively.
We put ∆f(x0;h) = f(x0 + h)− f(x0). Then given h with x0 + h ∈ E,

(g ◦ f)(x0 + h)− (g ◦ f)(x0) = g(f(x0 + h))− g(f(x0))

= g′(f(x0))[f(x0 + h)− f(x0)] + v(f(x0 + h)− f(x0))

= g′(y0)
[
f ′(x0)h+ u(h)

]
+ v(∆f(x0;h))

= g′(y0)f
′(x0)h+ g′(y0)u(h) + v(∆f(x0;h)) .

So it suffices to show that g′(y0)u(h) + v(∆f(x0;h)) = o(h) as h → 0,
x0 + h ∈ E. Firstly, since f is differentiable at x0, u(h) = o(h) so

lim sup
h→0

x0+h∈E

‖g′(y0)u(h)‖
‖h‖

≤ lim
h→0

x0+h∈E

‖g′(y0)‖
‖u(h)‖
‖h‖

= 0 .
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To show this for another term, note that as h → 0, x0 + h ∈ E we have
∆f(x0;h) → 0, y0 +∆f(x0;h) = f(x0 + h) ⊂ F , then we have

lim
h→0

x0+h∈E

‖v(∆f(x0;h))‖
‖h‖

= lim
h→0

x0+h∈E

‖v(∆f(x0;h))‖
‖∆f(x0;h)‖

‖∆f(x0;h)‖
‖h‖

= ‖f ′(x0)‖ lim
k→0

y0+k∈E

‖v(k)‖
‖k‖

= 0 ,

as desired. Thus g ◦ f is differentiable at x0 and (1.13) holds.

Remark 1.6. The chian rule can be rewritten in coordinate form, as fol-
lowing. As we know,

f ′(x) =


∂1f1(x) · · · ∂nf1(x)

... . . . ...
∂1fm(x) · · · ∂nfm(x)

 ,

and y = f(x), then

g′(y) =


∂1g1(y) · · · ∂mg1(y)

... . . . ...
∂1gk(y) · · · ∂mgk(y)

 .

The chian rule asserts that

(g ◦ f)′(x) =


∂1 (g1 ◦ f) (x) · · · ∂n (g1 ◦ f) (x)

... . . . ...
∂1 (gk ◦ f) (x) · · · ∂n (gk ◦ f) (x)



=


∂1g1(y) · · · ∂mg1(y)

... . . . ...
∂1gk(y) · · · ∂mgk(y)




∂1f1(x) · · · ∂nf1(x)
... . . . ...

∂1fm(x) · · · ∂nfm(x)

 .

In particular, if g is a real function, i.e., k = 1, then

∂j(g ◦ f)(x) =
n∑

j=1

∂ig(f(x)) · ∂jfi(x) .
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Example 1.3. Let γ be a differentiable mapping of the segment (a, b) ⊂ R1

into an open set E ⊂ Rn, in other words, γ is a differentiable curve in E.
Let f be a real-valued differentiable function with domain E. Define

g(t) = f(γ(t)) (a < t < b) .

The chain rule asserts then that

g′(t) = f ′(γ(t))γ′(t) (a < t < b) .

In particular, let u ∈ Rn be a unit vector (i.e., ‖u‖ = 1), and specialize γ so
that

γ(t) = x+ tu (−∞ < t <∞) .

Then γ′(t) = u for every t ∈ R. Hence g′(0) = f ′(x)u.

Some of these ideas will play a role in the following theorem.

Theorem 1.8 (The Finite-Increment Theorem). Suppose f maps a convex
open set E ⊂ Rn into Rm, f is differentiable in E, and there is a real number
M such that ∥∥f ′(x)∥∥ ≤M for all x ∈ E .

Then for all a, b in E,

‖f(b)− f(a)‖ ≤M‖b− a‖ .

Proof. Fix a ∈ E, b ∈ E. Define

γ(t) = (1− t)a+ tb for t ∈ [0, 1] .

Since E is convex, γ(t) ∈ E. Put

g(t) = f(γ(t)) for t ∈ [0, 1] .

Then g is continuous on [0, 1] and, for t ∈ (0, 1), by the chain rule we have

g′(t) = f ′(γ(t))γ′(t) = f ′(γ(t))(b− a) ,
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and hence∥∥g′(t)∥∥ ≤
∥∥f ′(γ(t))∥∥ ‖b− a‖ ≤M‖b− a‖ for all t ∈ (0, 1) .

Then by the mean value theorem, there exist ξ ∈ (0, 1) with

|g(1)− g(0)| = |g′(ξ)| ≤M‖b− a‖ .

But g(0) = f(a) and g(1) = f(b). This completes the proof.

Corollary 1.9. If f maps a region G ⊂ Rn into Rm and f is differentiable
in G with f ′(x) = 0 for all x ∈ G, then f is constant.

1.3 The Basic Facts of Differential Calculus of Real-
Valued Functions of Several Variables

Let Ω ⊂ Rn be a region (sometimes also called a domain), that is Ω is
an open connected set in Rn. In this section we will always suppose that
f : Ω 7→ R is a real-valued differentiable function.

1.3.1. Gradient and Directional Derivatives Take any x ∈ Ω. Then
f ′(x) is a linear functional on (the Hilbert space) Rn, by the preceding
remark, for h ∈ Rn

f ′(x)h =

n∑
i=1

∂if(x)hi = 〈h,∇f(x)〉 ,

where ∇f(x) ∈ Rn is the so-called gradient of f at x defined by

∇f(x) =
n∑

i=1

∂if(x)ei =


∂1f(x)

...
∂nf(x)

 .
Hence the gradient ∇f is a mapping form Ω ⊂ Rn into Rn.
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Remark 1.7. The gradient is perpendicular to level sets. In fact, let γ
be a differentiable curve [0, 1] → Ω, which lies in a level set of f, that is
f(γ(t)) = c for all t ∈ [0, 1]. Then we have for all t ∈ [0, 1] that〈

∇f(γ(t)), γ′(t)
〉
= 0 .

Let u ∈ Rn be a unit vector (i.e., ‖u‖ = 1), then we define the directional
derivative of f at x, in the direction of the unit vector u by

(∂uf) (x) := lim
t→0

f(x+ tu)− f(x)

t
= f ′(x)u = 〈u,∇f(x)〉 . (1.14)

If f and x are fixed, but u varies, then (1.14) shows that ∂uf(x) attains its
maximum when u is a positive scalar multiple of ∇f(x). (The case (∇f)(x) =
0 should be excluded here.) If u =

∑n
1 uiei, then (1.14) shows that ∂uf(x)

can be expressed in terms of the partial derivatives of f at x by the formula

∂uf(x) =

n∑
i=1

∂if(x)ui .

In other words, the direction of ∇f(x) is the direction of steepest ascent at
x, −∇f(x) is the direction of steepest descent.

1.3.2. The Mean-Value Theorem We know the following mean-value
theorem for a differentiable function f with single variable: f(x) − f(y) =

f ′(ξ)(x − y) for some ξ ∈ (x, y). We cannot generalize this, however, for
vector-valued functions with single variable, since in general we get a dif-
ferent ξ for every component. The fundamental theorem of calculus does
not have this disadvantage: f(y)− f(x) =

∫ y
x f

′(ξ)dξ is also true for vector-
valued functions with single variable, but requires f ′ to be integrable.

We are now going to prove some versions of the mean-value theorem for
functions of several variables. Let Ω be a region in Rn. For any point a,
b in Rn, denote by [a, b] and (a, b) the closed and open line segment with
endpoints a and b respectively, i.e.,

[a, b] := {(1− t)a+ tb : t ∈ [0, 1]} ;

(a, b) := {(1− t)a+ tb : t ∈ (0, 1)} .
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Now we can state the mean-value theorem.

Theorem 1.10 (The Mean-Value Theorem). Let f be a real-valued function
defined in a region Ω ⊂ Rn and let the closed line segment [x, x + h] be
contained in Ω. If the function f is continuous at the points of the closed line
segment [x, x+h] and differentiable at points of the open interval (x, x+h),
then there exists a point ξ ∈ (x, x+ h) such that

f(x+ h)− f(x) = f ′(ξ)h = 〈h,∇f(ξ)〉 .

Proof. Consider the auxiliary function

F (t) = f(x+ th)

defined on the closed interval 0 ≤ t ≤ 1. This function satisfies all the
hypotheses of Lagrange mean-value theorem: it is continuous on [0, 1], be-
ing the composition of continuous mappings, and differentiable on the open
interval (0, 1), being the composition of differentiable mappings. Conse-
quently, there exists a point θ ∈ (0, 1) such that

F (1)− F (0) = F ′(θ) .

But F (1) = f(x + h), F (0) = f(x), F ′(θ) = f ′(x + θh)h, and hence the
equality just written is the same as the assertion of the theorem.

Remark 1.8. The theorem is called the mean-value theorem because there
exists a certain ”average” point ξ ∈ (x, x + h) at which Eq. (8.53) holds.
We have already noted in our discussion of Lagrange’s theorem (Sect. 5.3.1)
that the mean-value theorem is specific to real-valued functions. A general
finite-increment theorem for mappings has been given in Theorem 1.8.

1.3.3. Higher-Order Partial Derivatives Let f : Ω → R be a func-
tion defined in a region Ω ⊂ Rn. Suppose f has the partial derivative
∂if = ∂f

∂xi
with respect to the variables xi in Ω. Then this partial derivative

∂if : Ω → R is also a function which in turn may have a partial derivative
∂j (∂if) with respect to a variable xj at some point x ∈ Ω. In this case,
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∂j (∂if) (x) is called the second partial derivative of f with respect to the
variables xi and xj at x and is denoted by one of the following symbols:

∂jif(x) or ∂2f

∂xj∂xi
(x) .

The order of the indices indicates the order in which the differentiation is
carried out with respect to the corresponding variables.

We have now defined partial derivatives of second order. If a partial
derivative of order k

∂i1···ikf =
∂kf

∂xi1 . . . ∂xik

has been defined, we define by induction the partial derivative of order k+1

by the relation
∂ji1···ikf(x) := ∂j (∂i1···ikf) (x) .

At this point a question arises that is specific for functions of several vari-
ables: Does the order of differentiation affect the partial derivative com-
puted?

Lemma 1.11. Let f : Ω → R be a real function having partial derivatives
∂if and ∂jf in a region Ω ⊂ Rn. If the second order partial derivative ∂ijf
exists in Ω and is continuous some point x ∈ Ω, then ∂jif exists at this point
x. Moreover,

∂2f

∂xj∂xi
(x) =

∂2f

∂xi∂xj
(x) .

Proof. Note that by definition,

∂2f

∂xj∂xi
(x) = lim

t→0

∂f
∂xi

(x+ tej)− ∂f
∂xi

(x)

t

= lim
t→0

lim
s→0

f(x+ tej + sei)− f(x+ tej)− f(x+ sei) + f(x)

st
.

To show this repeated limit exists, we show that the double limit exists and
thie repeated limit equals to the double limit. Thus, we set, for s, t in R,

ϕ(s, t) := f(x+ tej + sei)− f(x+ tej)− f(x+ sei) + f(x)
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Let F (x) = f(x+ sei)− f(x), then by the mean-value theorem,

ϕ(s, t) = F (x+ tej)− F (x) = t
∂F

∂xj
(x+ θ1tej)

= t

[
∂f

∂xj
(x+ sei + θtej)−

∂f

∂xj
(x+ θ1tej)

]
= st

∂2f

∂xi∂xj
(x+ θ2sei + θ1tej) ,

where θ1, θ2 in (0, 1). Thus, by the continuity of ∂ijf at x,

lim
s,t→0

ϕ(s, t)

st
=

∂2f

∂xi∂xj
(x) .

Observe that for any fixed t 6= 0,

lim
s→0

ϕ(s, t)

st
=

∂f
∂xi

(x+ tej)− ∂f
∂xi

(x)

t
.

Since the double limits exists, we get

lim
t→0

∂f
∂xi

(x+ tej)− ∂f
∂xi

(x)

t
=

∂2f

∂xi∂xj
(x) ,

as desired.

The following example shows that the condition in Lemma 1.11 that the
second partial derivatives must be continuous is indeed necessary.

Example 1.4. Let f : R2 → R be given by

f(x, y) =

{
xy x2−y2

x2+y2
, for (x, y) 6= (0, 0) ;

0 , for (x, y) = (0, 0) .

One can show that f ∈ C1
(
R2
)
, but ∂2f

∂x∂y (0, 0) = 1 and ∂2f
∂y∂xf(0, 0) = −1.

Let us agree to denote the set of functions f : Ω → R all of whose partial
derivatives up to order k inclusive are defined and continuous in the domain
Ω ⊂ Rm by the symbol C(k)(Ω;R) or C(k)(Ω). Then using the preceding
lemma, we obtain the following.

24



Theorem 1.12. If f ∈ C(k)(Ω), the value ∂i1...ikf(x) of the partial derivative
is independent of the order i1, . . . , ik of differentiation, that is, remains the
same for any permutation of the indices i1, . . . , ik.

Proof. In the case k = 2 this theorem is contained in Lemma 1.11. Let us
assume that the theorem holds up to order n inclusive. We shall show that
then it also holds for order n+ 1.

But ∂i1i2···in+1f(x) = ∂i1
(
∂i2···in+1f

)
(x). By the induction assumption

the indices i2, . . . , in+1 can be permuted without changing the function
∂i2···in+1f(x), and hence without changing ∂i1···in+1f(x). For that reason it
suffices to verify that one can also permute, for example, the indices i1 and
i2 without changing the value of the derivative ∂i1i2···in+1f(x). Since

∂i1i2···in+1f(x) = ∂i1i2
(
∂i3···in+1f

)
(x)

the possibility of this permutation follows immediately from Lemma 1.11.
By the induction we complete the proof.

Example 1.5. If f(x) = f (x1, . . . , xn) and f ∈ C(k)(Ω), then, under the
assumption that [x, x+h] ⊂ Ω, for the function φ(t) = f(x+ th) defined on
the closed interval [0, 1] we obtain φ ∈ C(k)[0, 1] with

φ(k)(t) =
∑

1≤i1,··· ,ik≤n

hi1 · · ·hik
∂kf

∂xi1 · · · ∂xik
(x+ th) . (1.15)

We can also write formula (1.17) as

φ(k)(t) =

(
h1

∂

∂x1
+ · · ·+ hn

∂

∂xn

)k

f(x+ th) .

1.3.4. Taylor’s Formula In this subsection we generalize the Taylor’s
formula to the functions of several variables. To this end, we shall use the
the polynomials in n-variables to approximate functions in n-variables with
appropriate differentiability.
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Recall that for k ≥ 1,

(x1 + · · ·+ xn)
k =

∑
α1+···+αn=k

k!

α1! · · ·αn!
xα1
1 · · ·xαn

n , (1.16)

where α1, · · · , αn are nonnegative integers. To keep things simple, we intro-
duce the following notations. We say α = (α1, · · · , αn) ∈ Nn

0 is a multi-index,
and put

|α| := α1 + · · ·+ αn ; α! := α1! · · ·αn! .

For x = (x1, · · · , xn) ∈ Rn, we put

xα := xα1 · · ·xαn ,

then (1.16) becomes

(x1 + · · ·+ xn)
k =

∑
|α|=k

k!

α!
xα . (1.17)

Moreover, for multi-index α ∈ Nn
0 , we define the differential operator ∂α by

∂α =
∂|α|

∂xα1
1 . . . ∂xαn

n
.

Now we can state the Taylor’s formula.

Theorem 1.13. If the function f : Ω → R is defined and belongs to class
C(k+1)(Ω) in a region Ω ⊂ Rn. Suppose the closed interval [x, x + h] is
completely contained in Ω, then there exists θ ∈ (0, 1) so that

f(x+ h) =
∑

0≤|α|≤k

1

α!
∂αf(x)hα + rk(f, x;h) (1.18)

where
rk(f, x;h) =

∑
|α|=k+1

1

α!
∂αf(x+ θh)hα

is called the Lagrange form of the remainder term.

Proof. Taylor’s formula follows immediately from the corresponding Taylor
formula for a function of one variable. In fact, consider the auxiliary function

φ(t) = f(x+ th) for t ∈ [0, 1] .
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Then by Example 1.5, φ belongs to the class C(k+1)[0, 1]. By Taylor’s
formula for functions of one variable, we can write that

φ(1) =

k∑
j=0

φ(j)(0)

j!
+

1

(k + 1)!
φ(k+1)(θ)

for some θ ∈ (0, 1). By Example 1.5 and (1.15) we obtain that for 0 ≤ j ≤
k + 1 and t ∈ [0, 1],

φ(j)(t) = (h1∂1 + · · ·+ hn∂n)
j f(x+ th)

=
∑
|α|=j

j!

α!
∂αf(x+ th)hα .

Combine this with φ(1) = f(x + h) and φ(0) = f(x), we get the desired
result.

If we write the remainder term in relation (1.3.4) in the Lagrange form
rather than the integral form, then the equality

φ(1) =
k∑

j=0

φ(j)(0)

j!
+

1

k!

∫ 1

0
φ(k+1)(t)(1− t)k dt .

implies Taylor’s formula (1.18) with remainder term

rk(f, x;h) =
∑

|α|=k+1

1

k!

∫ 1

0
∂αf(x+ th)hα (1− t)k dt .

This form of the remainder term, as in the case of functions of one variable,
is called the integral form of the remainder term in Taylor’s formula.

We end this subsection with the Taylor’s formula with the remainder
term in Peano form.

Theorem 1.14. If the function f : Ω → R is defined and belongs to class
C(k)(Ω) in a region Ω ⊂ Rn. Suppose the closed interval [x, x + h] is com-
pletely contained in Ω, then

f(x+ h) =
∑

0≤|α|≤k

1

α!
∂αf(x)hα + rk(f, x;h)
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where
rk(f, x;h) = o(‖h‖k) as h→ 0 .

Proof. By Theorem 1.13

f(x+ h) =
∑

0≤|α|≤k−1

1

α!
∂αf(x)hα +

∑
|α|=k

1

α!
∂αf(x+ θh)hα

=
∑

0≤|α|≤k

1

α!
∂αf(x)hα +

∑
|α|=k

1

α!
[∂αf(x+ θh)− ∂αf(x)] hα

Thus
rk(f, x;h) =

∑
|α|=k

1

α!
[∂αf(x+ θh)− ∂αf(x)] hα .

Since for |α| = α1 + · · ·+ αn = k

|hα| = |hα1
1 | · · · |hαn

n | ≤ ‖h‖α1+···+αn = ‖h‖k ,

and f ∈ C(k)(Ω), it’s easy to see that
|rk(f, x;h)|

‖h‖k
→ 0 as h→ 0 ,

and thus the desired result follows.

1.3.5. Extrema of Functions of Several Variables One of the most
important applications of differential calculus is its use in finding extrema
of functions. Recall that a function f : Ω → R has a local maximum (resp.
local minimum) at a point a ∈ Ω if there exists a neighborhood U of the
point a such that f(x) ≤ f (a) (resp. f(x) ≥ f (a)) for all x ∈ U .

If the strict inequality f(x) < f (a) holds for x ∈ U\{a} (or, respectively,
f(x) > f (a)), the function has a strict local maximum (resp. strict local
minimum) at a. The local minima and maxima of a function are called its
local extrema.

Lemma 1.15. f : Ω → R has partial derivatives with respect to each of the
variables x1, . . . , xn at the point a ∈ Ω. Then a necessary condition for the
function to have a local extremum at a is ∇f(a) = 0, in other words,

∂f

∂x1
(a) = 0, · · · , ∂f

∂xn
(a) = 0 .
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Proof. Consider the function φ (x1) = f (x1, a2, . . . , am) of one variable de-
fined, according to the hypotheses of the theorem, in some neighborhood of
the point a1 on the real line. At a1 the function φ (x1) has a local extremum,
and since

φ′ (a1) =
∂f

∂x1
(a)

it follows that ∂f
∂x1

(a) = 0 The other equalities are proved similarly.

Lemma 1.15 shows that the local extrema of f : Ω → R are found either
among the points at which f is not differentiable or at the points where the
differential f ′ (a) vanishes.

If a ∈ Ω satisfying ∇f(a) = 0, we say that a is a critical point (or
stationary point) of f . A critical point may not be a extremum point. An
example that confirms this is any example constructed for this purpose for
functions of one variable. Thus, where previously we spoke of the function
x 7→ x3, whose derivative is zero at zero, but has no extremum there, we
can now consider the function

f (x1, . . . , xn) = (x1)
3

all of whose partial derivatives are zero at a = (0, . . . , 0), while the function
obviously has no extremum at that point.

Remark 1.9. Generally, the point a is a critical point of the mapping f :

Ω → Rm if the rank of f ′(a) is less than min{m,n}, that is, smaller than
the maximum possible value it can have. In particular, if m = 1, the point
a is critical if ∇f(a) = 0.

After the critical points of a function have been found by solving the
system ∇f(a) = 0, the subsequent analysis to determine whether they are
extrema or not can often be carried out using Taylor’s formula and the
following sufficient conditions for the presence or absence of an extremum
provided by that formula.

Theorem 1.16. Let f : Ω → R be a function of class C(2) (Ω). Let a ∈ Ω

be a critical point of f . If If, in the Taylor expansion of the function at the
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point a

f(a+ h)− f(a) +
1

2

n∑
i,j=1

∂2f

∂xi∂xj
(a)hihj + o

(
‖h‖2

)
(1.19)

the quadratic form

h 7→ ∂2f

∂xi∂xj
(a)hihj (1.20)

(i) is positive-definite or negative-definite, then f has a local extremum
at a, which is a strict local minimum if (1.20) is positive-definite and
a strict local maximum if it is negative-definite;

(ii) assumes both positive and negative values, then the function does not
have an extremum at a.

Proof. Let h 6= 0 and x0 + h ∈ Ω. Let us represent (1.19) in the form

f (a+ h)− f (a) =
1

2
‖h‖2

 m∑
i,j=1

∂2f

∂xi∂xj
(a)

hi

‖h‖
hj

‖h‖
+ r(h)

 (1.21)

where r(h) → 0 as h→ 0. It is clear that the sign of the difference f (a+ h)−
f (a) is completely determined by the sign of the quantity in brackets. We
now undertake to study this quantity.

The vector s = h
∥h∥ obviously has norm 1. The quadratic form (1.20)

is continuous as a function h ∈ Rm, and therefore its restriction to the
unit sphere Sn−1 = {x ∈ Rn : ‖x‖ = 1} is also continuous on Sn−1. But the
sphere Sn−1 is compact. Consequently, the form (1.20) has both a minimum
point and a maximum point on S, at which it assumes respectively the values
m and M .

If the form (1.20) is positive-definite, then 0 < m ≤ M, and there is
a number δ > 0 such that |r(h)| < m for ‖h‖ < δ.. Then for ‖h‖ < δ

the bracket on the right-hand side of (1.21) is positive, and consequently
f (a+ h) − f (a) > 0 for 0 < ‖h‖ < δ. Thus, in this case the point a is a
strict local minimum of the function.One can verify similarly that when the
form (1.20) is negative-definite, the function has a strict local maximum at
the point a.
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Thus (i) is now proved. We now prove (ii).

Let sm and sM be points of the unit sphere at which the form (1.20)
assumes the values m and M respectively, and let m < 0 < M .

Setting h = tsm, where t is a sufficiently small positive number so that
a+ tsm ∈ Ω, then

f (a+ tsm)− f (a) =
1

2
t2(m+ r(tsm))

where r(tsm) → 0 as t→ 0. Starting at some time (that is, for all sufficiently
small values of t ), the quantity m + o(1) on the right-hand side of this
equality will have the sign of m, that is, it will be negative. Consequently,
the left-hand side will also be negative. Similarly, setting h = tsM , we obtain

f (a+ tsM )− f (a) =
1

2!
t2(M + r(tsM ))

and consequently for all sufficiently small t the difference f (a+ tsM )−f (a)
is positive.

Thus, if the quadratic form (1.20) assumes both positive and negative
values on the unit sphere, or, what is obviously equivalent, in Rn, then in
any neighborhood of the point a there are both points where the value of
the function is larger than f (a) and points where the value is smaller than
f (a) . Hence, in that case a is not a local extremum of the function.

We now make a number of remarks in connection with this theorem.

Remark 1.10. Theorem 1.16 says nothing about the case when the form
(1.20) is semi-definite, that is, non-positive or non-negative. It turns out
that in this case the point may be an extremum, or it may not. This can be
seen, in particular from the follow- ing example.

Example 1.6. Let us find the extrema of the function f(x, y) = x4 + y4 −
2x2, which is defined in R2.

In accordance with the necessary conditions ∇f(x, y) = 0 we write the
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system of equations {
∂f
∂x (x, y) = 4x3 − 4x = 0
∂f
∂y (x, y) = 4y3 = 0

from which we find three critical points: (−1, 0), (0, 0), (1, 0). Since

∂2f

∂x2
(x, y) = 12x2 − 4,

∂2f

∂x∂y
(x, y) ≡ 0,

∂2f

∂y2
(x, y) = 12y2 ,

at the three critical points the quadratic form (1.20) has respectively the
form

8 (h1)
2 , −4 (h1)

2 , 8 (h1)
2 .

That is, in all cases it is positive semi-definite or negative semi-definite.
Theorem 1.16 is not applicable, but since f(x, y) =

(
x2 − 1

)2
+ y4 − 1, it

is obvious that the function f(x, y) has a strict minimum -1 (even a global
minimum) at the points (−1, 0), and (1, 0), while there is no extremum at
(0, 0), since for x = 0 and y 6= 0 we have f(0, y) = y4 > 0, and for y = 0

and sufficiently small x 6= 0 we have f(x, 0) = x4 − 2x2 < 0.

Remark 1.11. It should be kept in mind that we have given necessary
conditions ( and sufficient conditions for an extremum of a function only at
an interior point of its domain of definition. Thus in seeking the absolute
maximum or minimum of a function, it is necessary to examine the boundary
points of the domain of definition along with the critical interior points,
since the function may assume its maximal or minimal value at one of these
boundary points.

1.3.6. Some Geometric Images Connected with Functions of Sev-
eral Variables

(a). The Graph of a Function and Curvilinear Coordinates

Let x, y, and z be Cartesian coordinates of a point in R3 and let z =

f(x, y) be a continuous function defined in some domain Ω of the plane R2

of the variables x and y.
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By the general definition of the graph of a function, the graph of the
function f : Ω → R in our case is the set

S =
{
(x, y, z) ∈ R3 : (x, y) ∈ Ω, z = f(x, y)

}
in the space R3. It is obvious that the mapping F : Ω → S defined by the
relation (x, y) 7→ (x, y, f(x, y)) is a continuous one-to-one mapping of Ω onto
S, by which one can determine every point of S by exhibiting the point of
Ω corresponding to it, or, what is the same, giving the coordinates (x, y) of
this point of Ω.

Thus the pairs of numbers (x, y) ∈ Ω can be regarded as certain coordi-
nates of the points of a set S− the graph of the function z = f(x, y). Since
the points of S are given by pairs of numbers, we shall conditionally agree
to call S a two-dimensional surface in R3.

If we define a path Γ : I → Ω in Ω, then a path F ◦ Γ : I → S auto-
matically appears on the surface S. If x = x(t) and y = y(t) is a parametric
definition of the path Γ, then the path F ◦ Γ on S is given by the three
functions x = x(t) y = y(t), z = z(t) = f(x(t), y(t)). In particular, if we set
x = x0+ t, y = y0, we obtain a curve x = x0+ t, y = y0, z = f (x0 + t, y0) on
the surface S along which the coordinate y = y0 of the points of S does not
change. Similarly one can exhibit a curve x = x0, y = y0+t, z = f (x0, y0 + t)

on S along which the first coordinate x0 of the points of S does not change.
By analogy with the planar case these curves on S are naturally called co-
ordinate lines on the surface S. However, in contrast to the coordinate lines
in Ω ⊂ R2, which are pieces of straight lines, the coordinate lines on S are
in general curves in R3. For that reason, the coordinates (x, y) of points of
the surface S are often called curvilinear coordinates on S.

Thus the graph of a continuous function z = f(x, y), defined in a domain
Ω ⊂ R2 is a two-dimensional surface S in R3 whose points can be defined
by curvilinear coordinates (x, y) ∈ Ω. At this point we shall not go into
detail on the general definition of a surface, since we are interested only in
a special case of a surface - the graph of a function.

(b). The Tangent Plane to the Graph of a Function
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Differentiability of a function z = f(x, y) at the point (x0, y0) ∈ Ω means
that

f(x, y) =f (x0, y0) +A (x− x0) +B (y − y0)+

+ o

(√
(x− x0)

2 + (y − y0)
2

)
as (x, y) → (x0, y0) .

(1.22)

where A and B are certain constants.

In R3 let us consider the plane

z = z0 +A (x− x0) +B (y − y0) (1.23)

where z0 = f (x0, y0) . Comparing equalities (1.22) and (1.23), we see that
the graph of the function is well approximated by the plane (1.23) in a neigh-
borhood of the point (x0, y0, z0) . More precisely, the point (x, y, f(x, y)) of
the graph of the function differs from the point (x, y, z(x, y)) of the plane
(1.23) by an amount that is infinitesimal in comparison with the magnitude√
(x− x0)

2 + (y − y0)
2 of the displacement of its curvilinear coordinates

(x, y) from the coordinates (x0, y0) of the point (x0, y0, z0).

By the uniqueness of the differential of a function, the plane (1.23) pos-
sessing this property is unique and has the form

z = f (x0, y0) +
∂f

∂x
(x0, y0) (x− x0) +

∂f

∂y
(x0, y0) (y − y0) . (1.24)

This plane is called the tangent plane to the graph of the function z = f(x, y)

at the point (x0, y0, f (x0, y0)).

Thus, the differentiability of a function z = f(x, y) at the point (x0, y0)

and the existence of a tangent plane to the graph of this function at the
point (x0, y0, f (x0, y0)) are equivalent conditions.

(c). The Normal Vector

Writing (1.24) for the tangent plane in the canonical form

∂f

∂x
(x0, y0) (x− x0) +

∂f

∂y
(x0, y0) (y − y0)− (z − f (x0, y0)) = 0
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we conclude that the vector(
∂f

∂x
(x0, y0) ,

∂f

∂y
(x0, y0) ,−1

)
(1.25)

is the normal vector to the tangent plane. Its direction is considered to
be the direction normal or orthogonal to the surface S (the graph of the
function) at the point (x0, y0, f (x0, y0)).

In particular, if (x0, y0) is a critical point of the function f(x, y), then
the normal vector to the graph at the point (x0, y0, f (x0, y0)) has the form
(0,0,-1) and consequently, the tangent plane to the graph of the function at
such a point is horizontal (parallel to the xy-plane). The three graphs in
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Fig. 8.1

d. Tangent Planes and Tangent Vectors

We know that if a path Γ : I → R
3 in R

3 is given by differentiable functions x =
x(t), y = y(t), z = z(t), then the vector (ẋ(0), ẏ(0), ż(0)) is the velocity vector at
time t = 0. It is a direction vector of the tangent at the point x0 = x(0), y0 = y(0),
z0 = z(0) to the curve in R

3 that is the support of the path Γ .
Now let us consider a path Γ : I → S on the graph of a function z = f (x, y)

given in the form x = x(t), y = y(t), z = f (x(t), y(t)). In this particular case we
find that

(
ẋ(0), ẏ(0), ż(0)

)=
(

ẋ(0), ẏ(0),
∂f

∂x
(x0, y0)ẋ(0)+ ∂f

∂y
(x0, y0)ẏ(0)

)

,

from which it can be seen that this vector is orthogonal to the vector (8.76) nor-
mal to the graph S of the function at the point (x0, y0, f (x0, y0)). Thus we have
shown that if a vector (ξ, η, ζ ) is tangent to a curve on the surface S at the point
(x0, y0, f (x0, y0)), then it is orthogonal to the vector (8.76) and (in this sense) lies
in the plane (8.75) tangent to the surface S at the point in question. More precisely
we could say that the whole line x = x0 + ξ t , y = y0 + ηt , z= f (x0, y0)+ ζ t lies
in the tangent plane (8.75).

Let us now show that the converse is also true, that is, if a line x = x0 + ξ t ,
y = y0+ ηt , z= f (x0, y0)+ ζ t , or what is the same, the vector (ξ, η, ζ ), lies in the
plane (8.75), then there is a path on S for which the vector (ξ, η, ζ ) is the velocity
vector at the point (x0, y0, f (x0, y0)).

The path can be taken, for example, to be

x = x0 + ξ t, y = y0 + ηt, z= f (x0 + ξ t, y0 + ηt).

In fact, for this path,

ẋ(0)= ξ, ẏ(0)= η, ż(0)= ∂f

∂x
(x0, y0)ξ + ∂f

∂y
(x0, y0)η.

In view of the equality

∂f

∂x
(x0, y0)ẋ(0)+ ∂f

∂y
(x0, y0)ẏ(0)− ż(0)= 0

Figure 1: Tangent plane

Figture 1 illustrate what has just been said. Figture 1 a and c depict the
location of the graph of a function with respect to the tangent plane in a
neighborhood of a local extremum (minimum and maximum respectively),
while Figture 1 b shows the graph in the neighborhood of a so-called saddle
point.

(d). Tangent Planes and Tangent Vectors

We know that if a path Γ : I → R3 in R3 is given by differentiable
functions x = x(t), y = y(t), z = z(t), then the vector (x′(0), y′(0), z′(0)) is
the velocity vector at time t = 0. It is a direction vector of the tangent at the
point x0 = x(0), y0 = y(0) z0 = z(0) to the curve in R3 that is the support
of the path Γ.

Now let us consider a path Γ : I → S on the graph of a function
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z = f(x, y) given in the form x = x(t), y = y(t), z = f(x(t), y(t)). In this
particular case we find that

(x′(0), y′(0), z′(0)) =

(
x′(0), y′(0),

∂f

∂x
(x0, y0)x

′(0) +
∂f

∂y
(x0, y0) y

′(0)

)
from which it can be seen that this vector is orthogonal to the vector (1.25)
normal to the graph S of the function at the point (x0, y0, f (x0, y0)) . Thus
we have shown that if a vector (ξ, η, ζ) is tangent to a curve on the surface S
at the point (x0, y0, f (x0, y0)) , then it is orthogonal to the vector (1.25) and
(in this sense) lies in the plane (1.24) tangent to the surface S at the point
in question. More precisely we could say that the whole line x = x0+ξt, y =

y0 + ηt, z = f (x0, y0) + ζt lies in the tangent plane (1.24).

Let us now show that the converse is also true, that is, if a line x = x0+ξt

y = y0 + ηt, z = f (x0, y0) + ζt, or what is the same, the vector (ξ, η, ζ), lies
in the plane (1.24), then there is a path on S for which the vector (ξ, η, ζ) is
the velocity vector at the point (x0, y0, f (x0, y0)). The path can be taken,
for example, to be

x = x0 + ξt, y = y0 + ηt, z = f (x0 + ξt, y0 + ηt) .

In fact, for this path,

x′(0) = ξ, y′(0) = η, z′(0) =
∂f

∂x
(x0, y0) ξ +

∂f

∂y
(x0, y0) η .

In view of the equality

∂f

∂x
(x0, y0)x

′(0) +
∂f

∂y
(x0, y0) y

′(0)− z′(0) = 0

and the hypothesis that

∂f

∂x
(x0, y0) ξ +

∂f

∂y
(x0, y0) η − ζ = 0

We conclude that
(x′(0), y′(0), z′(0)) = (ξ, η, ζ)

Hence the tangent plane to the surface S at the point (x0, y0, z0) is formed
by the vectors that are tangents at the point (x0, y0, z0) to curves on the
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Fig. 8.2

and the hypothesis that

∂f

∂x
(x0, y0)ξ + ∂f

∂y
(x0, y0)η− ζ = 0.

We conclude that
(
ẋ(0), ẏ(0), ż(0)

)= (ξ, η, ζ ).

Hence the tangent plane to the surface S at the point (x0, y0, z0) is formed by the
vectors that are tangents at the point (x0, y0, z0) to curves on the surface S passing
through the point (see Fig. 8.2).

This is a more geometric description of the tangent plane. In any case, one can
see from it that if the tangent to a curve is invariantly defined (with respect to the
choice of coordinates), then the tangent plane is also invariantly defined.

We have been considering functions of two variables for the sake of visualiz-
ability, but everything that was said obviously carries over to the general case of a
function

y = f
(
x1, . . . , xm

)
(8.77)

of m variables, where m ∈N.
At the point (x1

0 , . . . , xm
0 , f (x1

0 , . . . , xm
0 )) the plane tangent to the graph of such

a function can be written in the form

y = f
(
x1

0 , . . . , xm
0

)+
m∑

i=1

∂f

∂xi

(
x1

0 , . . . , xm
0

)(
xi − xi

0

); (8.78)

the vector
(

∂f

∂x1
(x0), . . . ,

∂f

∂xm
(x0),−1

)

is the normal vector to the plane (8.78). This plane itself, like the graph of the func-
tion (8.77), has dimension m, that is, any point is now given by a set (x1, . . . , xm)

of m coordinates.
Thus, Eq. (8.78) defines a hyperplane in R

m+1.
Repeating verbatim the reasoning above, one can verify that the tangent plane

(8.78) consists of vectors that are tangent to curves passing through the point

Figure 2: Vectors in the tangent plane

surface S passing through the point (see Figture 2). This is a more geometric
description of the tangent plane. In any case, one can see from it that if
the tangent to a curve is invariantly defined (with respect to the choice of
coordinates), then the tangent plane is also invariantly defined.

(d). The General Case

We have been considering functions of two variables for the sake of visu-
alizability, but everything that was said obviously carries over to the general
case of a function

y = f (x1, . . . , xn) (1.26)

of n variables. At the point (a1, . . . , an, f (a1, . . . , an)) the plane tangent to
the graph of such a function can be written in the form

y = f (a1, . . . , an) +

n∑
i=1

∂f

∂xi
(a1, . . . , an) (xi − ai) (1.27)

the vector (
∂f

∂x1
(a) , . . . ,

∂f

∂xn
(a) ,−1

)
is the normal vector to the tangent plane (1.27). This plane itself, like the
graph of the function (1.26) has dimension n, that is, any point is now given
by a set (x1, . . . , xn) of n coordinates.

Thus, (1.27) defines a hyperplane in Rn+1.

Repeating verbatim the reasoning above, one can verify that the tangent
plane (1.27) consists of vectors that are tangent to curves passing through
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the point (a1, . . . , an, f (a1, . . . , an)) and lying on the n-dimensional surface
S− the graph of the function (1.26).

1.4 The Implicit Function Theorem

In this section we shall prove the implicit function theorem, which is impor-
tant both intrinsically and because of its numerous applications.

1.4.1. Introduction Let us begin by explaining the problem. Suppose,
for example, we have the relation

x2 + y2 − 1 = 0 (1.28)

between the coordinates x, y of points in the plane R2. The set of all points
of R2 satisfying this condition is the unit circle.

The presence of the relation (1.28) shows that after fixing one of the
coordinates, for example, x, we can no longer choose the second coordinate
arbitrarily. Thus relation (1.28) determines the dependence of y on x. We
are interested in the question of the conditions under which the implicit
relation (1.28) can be solved as an explicit functional dependence y = y(x)

Solving Eq. (1.28) with respect to y, we find that

y = ±
√
1− x2 (1.29)

that is, to each value of x such that |x| < 1, there are actually two ad-
missible values of y. In forming a functional relation y = y(x) satisfying
relation (1.28) one cannot give preference to either of the values (1.29) with-
out invoking additional requirements. For example, the function y(x) that
assumes the value +

√
1− x2 at rational points of the closed interval [-1,1]

and the value −
√
1− x2 at irrational points obviously satisfies (1.28).

It is clear that one can create infinitely many functional relations satis-
fying (1.28) by varying this example.

The question whether the set defined in R2 by (1.28) is the graph of a
function y = y(x) obviously has a negative answer, since from the geometric
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point of view it is equivalent to the question whether it is possible to establish
a one-to-one direct projection of a circle into a line.8.5 The Implicit Function Theorem 481

Fig. 8.4

The presence of the relation (8.80) shows that after fixing one of the coordinates,
for example, x, we can no longer choose the second coordinate arbitrarily. Thus
relation (8.80) determines the dependence of y on x. We are interested in the ques-
tion of the conditions under which the implicit relation (8.80) can be solved as an
explicit functional dependence y = y(x).

Solving Eq. (8.80) with respect to y, we find that

y =±
√

1− x2, (8.81)

that is, to each value of x such that |x|< 1, there are actually two admissible values
of y. In forming a functional relation y = y(x) satisfying relation (8.80) one cannot
give preference to either of the values (8.81) without invoking additional require-
ments. For example, the function y(x) that assumes the value +√1− x2 at rational
points of the closed interval [−1,1] and the value −√1− x2 at irrational points
obviously satisfies (8.80).

It is clear that one can create infinitely many functional relations satisfying (8.80)
by varying this example.

The question whether the set defined in R
2 by (8.80) is the graph of a function

y = y(x) obviously has a negative answer, since from the geometric point of view
it is equivalent to the question whether it is possible to establish a one-to-one direct
projection of a circle into a line.

But observation (see Fig. 8.4) suggests that nevertheless, in a neighborhood of a
particular point (x0, y0) the arc projects in a one-to-one manner into the x-axis, and
that it can be represented uniquely as y = y(x), where x �→ y(x) is a continuous
function defined in a neighborhood of the point x0 and assuming the value y0 at x0.
In this aspect, the only bad points are (−1,0) and (1,0), since no arc of the circle
having them as interior points projects in a one-to-one manner into the x-axis. Even
so, neighborhoods of these points on the circle are well situated relative to the y-
axis, and can be represented as the graph of a function x = x(y) that is continuous
in a neighborhood of the point 0 and assumes the value−1 or 1 according as the arc
in question contains the point (−1,0) or (1,0).

How is it possible to find out analytically when a geometric locus of points de-
fined by a relation of the type (8.80) can be represented in the form of an explicit
function y = y(x) or x = x(y) in a neighborhood of a point (x0, y0) on the locus?

Figure 3: x2 + y2 − 1 = 0

But observation (see Figture 3) suggests that nevertheless, in a neighbor-
hood of a particular point (x0, y0) the arc projects in a one-to-one manner
into the x -axis, and that it can be represented uniquely as y = y(x), where
x 7→ y(x) is a continuous function defined in a neighborhood of the point
x0 and assuming the value y0 at x0. In this aspect, the only bad points are
(−1, 0) and (1, 0), since no arc of the circle having them as interior points
projects in a one-to-one manner into the x-axis. Even so, neighborhoods of
these points on the circle are well situated relative to the y axis, and can
be represented as the graph of a function x = x(y) that is continuous in a
neighborhood of the point 0 and assumes the value −1 or 1 according as the
arc in question contains the point (−1, 0) or (1, 0).

How is it possible to find out analytically when a geometric locus of
points defined by a relation of the type (1.28) can be represented in the
form of an explicit function y = y(x) or x = x(y) in a neighborhood of a
point (x0, y0) on the locus?

We shall discuss this question using the following, now familiar, method.
We have a function F (x, y) = x2+y2−1. The local behavior of this function
in a neighborhood of a point (x0, y0) is well described by its differential

F ′
x (x0, y0) (x− x0) + F ′

y (x0, y0) (y − y0)
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since
F (x, y) =F (x0, y0) + F ′

x (x0, y0) (x− x0)+

+ F ′
y (x0, y0) (y − y0) + o (|x− x0|+ |y − y0|)

as (x, y) → (x0, y0).

If F (x0, y0) = 0 and we are interested in the behavior of the level curve

F (x, y) = 0

of the function in a neighborhood of the point (x0, y0) , we can judge that
behavior from the position of the (tangent) line

F ′
x (x0, y0) (x− x0) + F ′

y (x0, y0) (y − y0) = 0 . (1.30)

If this line is situated so that its equation can be solved with respect
to y, then, since the curve F (x, y) = 0 differs very little from this line in a
neighborhood of the point (x0, y0) , we may hope that it also can be written
in the form y = y(x) in some neighborhood of the point (x0, y0). The same
can be said about local solvability of F (x, y) = 0 with respect to x.

Writing (1.30) for the specific relation (1.28) we obtain the following
equation for the tangent line:

x0 (x− x0) + y0 (y − y0) = 0 .

This equation can always be solved for y when y0 6= 0, that is, at all points
of the circle except (−1, 0) and (1, 0). It is solvable with respect to x at all
points of the circle except (0,−1) and (0, 1).

1.4.2. An Elementary Version of the Implicit Function Theorem
In this section we shall obtain the implicit function theorem by a very intu-
itive, but not very constructive method, one that is adapted only to the case
of real-valued functions of real variables. The reader can become familiar
with another method of obtaining this theorem, one that is in many ways
preferable, and with a more detailed analysis of its structure in the next
section.

The following proposition is an elementary version of the implicit func-
tion theorem.
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Proposition 1.17. F : Ω → R is a function defined in a region Ω ⊂ R2

and F ∈ C(p)(U ;R), where p ≥ 1. Suppose (x0, y0) ∈ Ω satisfies that

(i) F (x0, y0) = 0 ,

(ii) F ′
y (x0, y0) 6= 0 .

Then there exist open intervals U and V with x0 ∈ U , y0 ∈ V , U × V ⊂ Ω

and a function f ∈ C(p) (U ;V ) such that

F (x, y) = 0 if and only if y = f(x) for (x, y) ∈ U × V . (1.31)

Moreover, the derivative of the function f at the points x ∈ U can be
computed from the formula

f ′(x) = −F
′
x(x, f(x))

F ′
y(x, f(x))

. (1.32)

Before taking up the proof, we shall give some possible reformulations
of (1.31), which should bring out the meaning of the relation itself.

Remark 1.12. Proposition 1.17 says that the portion of the set defined
by the relation F (x, y) = 0 that belongs to the neighborhood U × V of the
point (x0, y0) is the graph of a function f : U → V of class C(p) (U ;V ).
In other words, one can say that inside the neighborhood U × V of the
point (x0, y0) the equation F (x, y) = 0 has a unique solution for y, and the
function y = f(x) is that solution, that is, F (x, f(x)) ≡ 0 on U .

It follows in turn from this that if y = f̃(x) is a function defined on
U that is known to satisfy the relation F (x, f(x)) ≡ 0 on U, f̃ (x0) = y0,

and this function is continuous at the point x0 ∈ U, then there exists a
neighborhood W ⊂ U of x0 such that f̃(W ) ⊂ V, and then f̃(x) ≡ f(x) for
x ∈ W . Without the assumption that f̃ is continuous at the point x0 and
the condition f̃ (x0) = y0, this last conclusion could turn out to be incorrect,
as can be seen from the example of the circle already studied.

Let us now prove Proposition 1.17.
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Proof. Step 1. We shall show that there exists open intervals U and V with
x0 ∈ U , y0 ∈ V , U × V ⊂ Ω and a function f : U → V satisfying (1.31).

Suppose for definiteness that F ′
y (x0, y0) > 0. Since F ∈ C(1)(Ω;R), there

exists a closed disk D = D(x0, y0; r) of radius r = 2β centering at (x0, y0)

that F ′
y(x, y) >

1
2F

′
y(x0, y0) > 0 for all (x, y) ∈ D. The function F (x0, y)

is defined and strictly increasing as a function of y on the closed interval
y0 − β ≤ y ≤ y0 + β. Consequently, F (x0, y0 − β) < F (x0, y0) = 0 <

F (x0, y0 + β). By the continuity of F , there exists a positive number α < β

such that for all x with |x− x0| ≤ α there holds

F (x, y0 − β) < 0 < F (x, y0 + β) .

We shall now show that the open intervals

U = {x ∈ R : |x− x0|α} , V = {y ∈ R : |y − y0| < β}

is the required one in which relation (1.31) holds. For each fixed x ∈ U we
fix the vertical closed interval with endpoints (x, y0 − β) and (x, y0 + β) .

Regarding F (x, y) as a function of y on that closed interval, we obtain a
strictly increasing continuous function that assumes values of opposite sign
at the endpoints of the interval. Consequently, for each x ∈ U, there is a
unique point yx ∈ V such that F (x, yx) = 0. Setting f : U → V ;x 7→ yx, we
arrive at relation (1.31).

Step 2. We now establish that f ∈ C (U ;V ).

Take any x ∈ U , it suffices to show that

∆f(x;h) := f(x+ h)− f(x) → 0 as h→ 0 .

Note that we have

F (x+ h, f(x+ h))− F (x, f(x))

= F (x+ h, f(x+ h))− F (x+ h, f(x)) + F (x+ h, f(x))− F (x, f(x))

= F ′
y(x+ h, f(x) + θ1∆f(x;h))∆f(x;h) + F ′

x(x+ θ2h, f(x))h = 0

where we used the Lagrange’s mean-value theorem and θ1, θ2 ∈ (0, 1). Thus

∆f(x;h) =
F ′
x(x+ θ2h, f(x))

F ′
y(x+ h, f(x) + θ1∆f(x;h))

h . (1.33)
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Since (x + θ2h, f(x)) and (x + h, f(x) + θ1∆f(x;h)) belongs to the closed
disk D, we have

|∆f(x;h)| ≤
2 sup(ξ,η)∈D |F ′

x(ξ, η)|
F ′
y(x0, y0)

|h| .

Thus ∆f(x;h) → 0 as h→ 0.

Step 3. We now establish that f ∈ C(1) (U ;V ) and (1.32) holds.

By (1.32), we have

f(x+ h)− f(x)

h
=

F ′
x(x+ θ2h, f(x))

F ′
y(x+ h, f(x) + θ1∆f(x;h))

.

Since F ∈ C1(Ω) and f ∈ C(U ;V ), we get that

lim
h→0

f(x+ h)− f(x)

h

= lim
h→0

F ′
x(x+ θ2h, f(x))

F ′
y(x+ h, f(x) + θ1∆f(x;h))

=
F ′
x(x, f(x))

F ′
y(x, f(x))

.

Thus f is differentiable in U and (1.32) holds. By the theorem on continuity
of composite functions, it follows from formula (1.33) that f ′ is continuous,
i.e., f ∈ C(1)(U ;V ).

Step 4. We now establish that f ∈ C(p) (U ;V ).

If F ∈ C(2)(U), the right-hand side of formula (1.32) can be differentiated
with respect to x, and we find that

f ′′(x) = −
[
F ′′
xx + F ′′

xy · f ′(x)
]
F ′
y − F ′

x

[
F ′′
xy + F ′′

yy · f ′(x)
](

F ′
y

)2 (1.34)

where F ′
x, F

′
y, F

′′
xx, F

′′
xy, and F ′′

yy are all computed at the point (x, f(x)). Thus
f ∈ C(2) (U ;V ) if F ∈ C(2)(Ω).

Since the order of the derivatives of f on the right-hand side of (1.32),
(1.34) and so forth, is one less than the order on the left-hand side of the
equality, we find by induction that f ∈ C(p) (U ;V ) if F ∈ C(p)(Ω).
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Example 1.7. Let us return to relation (1.28) studied above, which defines
a circle in R2, and verify Proposition 1.17 on this example. In this case

F (x, y) = x2 + y2 − 1

and it is obvious that F ∈ C(∞)
(
R2
)
. Next,

F ′
x(x, y) = 2x, F ′

y(x, y) = 2y

so that F ′
y(x, y) 6= 0 if y 6= 0. Thus, for any point (x0, y0) of this circle

different from the points (-1,0) and (1,0) there is a neighborhood such that
the arc of the circle contained in that neighborhood can be written in the
form y = f(x). Direct computation confirms this, and either f(x) =

√
1− x2

or f(x) = −
√
1− x2. Next, by Proposition 1.17

f ′ (x0) = −F
′
x (x0, y0)

F ′
y (x0, y0)

= −x0
y0

(1.35)

Direct computation yields

f ′(x) =

{
− x√

1−x2
, if f(x) =

√
1− x2

x√
1−x2

, if f(x) = −
√
1− x2

which can be written as the single expression

f ′(x) = − x

f(x)
= −x

y

and computation with it leads to the same result,

f ′ (x0) = −x0
y0

as computation from formula (1.35) obtained from Proposition 1.17.

It is important to note that formula (1.32) or (1.35) makes it possible
to compute f ′(x) without even having an explicit expression for the relation
y = f(x), if only we know that f (x0) = y0. The condition y0 = f (x0) must
be prescribed, however, in order to distinguish the portion of the level curve
F (x, y) = 0 that we intend to describe in the form y = f(x).

It is clear from the example of the circle that giving only the coordinate
x0 does not determine an arc of the circle, and only after fixing y0 have we
distinguished one of the two possible arcs in this case.
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The following proposition is a simple generalization of Proposition 1.17
to the case of a relation F (x1, . . . , xn, y) = 0.

Proposition 1.18. Suppose F : Ω → R is a function defined in a region
Ω ⊂ Rn+1 and F ∈ C(p)(Ω), where p ≥ 1. Suppose (x0, y0) ∈ Ω where
x0 ∈ Rn and y0 ∈ R, satisfies that

(i) F (x0, y0) = 0 ,

(ii) F ′
y (x0, y0) 6= 0 .

Then there exist n-dimension open rectangle U and V with x0 ∈ U , y0 ∈ V ,
U × V ⊂ Ω and a function f ∈ C(p) (U ;V ) such that

F (x, y) = 0 if and only if y = f(x) for (x, y) ∈ U × V .

Moreover, the partial derivatives of the function f at the points x ∈ U can
be computed from the formula

∂f

∂xj
(x) = −

∂F
∂xj

(x, f(x))

∂F
∂y (x, f(x))

, for 1 ≤ j ≤ n . (1.36)

Proof. The proof of the existence of U , V and the existence of the function
f : U → V and its continuity in U is a verbatim repetition of the corre-
sponding part of the proof of Proposition 1.17 with only a single change,
which reduces to the fact that the symbol x must now be interpreted as
(x1, . . . , xn).

If we now fix all the variables in the functions F (x1, . . . , xn, y) and
f (x1, . . . , xn) except xj and y, we have the hypotheses of Proposition
1.17 where now the role of x is played by the variable xj . Formula (1.36) fol-
lows from this. It is clear from this formula that ∂f

∂xj
∈ C (U) (j = 1, . . . , n),

that is, f ∈ C(1) (U ;V ) . Reasoning as in the proof of Proposition 1.17 we
establish by induction that f ∈ C(p) (U ;V ) when F ∈ C(p)(Ω).

Example 1.8. Assume that the function F : Ω → R is defined in a domain
Ω ⊂ Rn and belongs to the class C(1)(Ω); a = (a1, . . . , an) ∈ Ω and F (a) =

45



F (a1, . . . , an) = 0. If a is not a critical point of F, then at least one of the
partial derivatives of F at a is nonzero. Suppose, for example, that

∂F

∂xn
(a) 6= 0 .

Then, by Proposition 1.18 in some neighborhood of a the subset
of Ω defined by the equation F (x1, . . . , xn) = 0 can be defined as the
graph of a function f (x1, . . . , xn−1) , defined in a neighborhood of the point
(a1, · · · , an) ∈ Rn−1 that is continuously differentiable in this neighborhood
and such that f (a1, . . . , an−1) = an. Thus, in a neighborhood of a noncrit-
ical point a of F the equation

F (x1, . . . , xn) = 0

defines an (n− 1)-dimensional surface.

In particular, in the case of R3 the equation

F (x, y, z) = 0

defines a two-dimensional surface in a neighborhood of a noncritical point
(x0, y0, z0) satisfying the equation, which, when F ′

z (x0, y0, z0) 6= 0 holds, can
be locally written in the form

z = f(x, y) .

As we know, the equation of the plane tangent to the graph of this function
at the point (x0, y0, z0) has the form

z − z0 =
∂f

∂x
(x0, y0) (x− x0) +

∂f

∂y
(x0, y0) (y − y0) .

But by formula

∂f

∂x
(x0, y0) = −F

′
x (x0, y0, z0)

F ′
z (x0, y0, z0)

,
∂f

∂y
(x0, y0) = −

F ′
y (x0, y0, z0)

F ′
z (x0, y0, z0)

and therefore the equation of the tangent plane can be rewritten as

F ′
x (x0, y0, z0) (x− x0) + F ′

y (x0, y0, z0) (y − y0) + F ′
z (x0, y0, z0) (z − z0) = 0
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which is symmetric in the variables x, y, z.

Similarly, in the general case we obtain the equation
n∑

i=1

∂F

∂xi
(a) (xi − ai) = 0

of the hyperplane in Rm tangent at the point a = (a1, . . . , an) to the surface
given by the equation F (x1, . . . , xn) = 0 (naturally, under the assumptions
that F (a) = 0 and that a is a noncritical point of F ).

It can be seen from these equations that, given the Euclidean structure
on Rn, one can assert that the vector

∇F (a) =

(
∂F

∂x1
, . . . ,

∂F

∂xn

)
(a)

is orthogonal to the r-level surface F (x) = r of the function F at a corre-
sponding point a ∈ Rn.

For example, for the function

F (x, y, z) =
x2

a2
+
y2

b2
+
z2

c2

defined in R3, the r-level is the empty set if r < 0, a single point if r = 0,

and the ellipsoid
x2

a2
+
y2

b2
+
z2

c2
= r

if r > 0. If (x0, y0, z0) is a point on this ellipsoid, then by what has been
proved, the vector

∇F (x0, y0, z0) =

(
2x0
a2

,
2y0
b2
,
2z0
c2

)
is orthogonal to this ellipsoid at the point (x0, y0, z0) , and the tangent plane
to it at this point has the equation

x0 (x− x0)

a2
+
y0 (y − y0)

b2
+
z0 (z − z0)

c2
= 0

which, when we take account of the fact that the point (x0, y0, z0) lies on
the ellipsoid, can be rewritten as

x0x

a2
+
y0y

b2
+
z0z

c2
= r .
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1.4.3. The Implicit Function Theorem We now turn to the general
case of a system of equations

F1 (x1, . . . , xn, y1, . . . ym) = 0
...
Fm (x1, . . . , xn, y1, . . . , ym) = 0

(1.37)

which we shall solve with respect to y1, . . . , ym, that is, find a system of
functional relations 

y1 = f1 (x1, . . . , xn)
...
ym = fm (x1, . . . , xn)

(1.38)

locally equivalent to the system (1.37).

For the sake of brevity, convenience in writing, and clarity of statement,
let us agree that x = (x1, . . . , xn), y = (y1, . . . , ym) . We shall write the left-
hand side of the system (1.37) as F (x, y), the system of equations (1.37) as
F (x, y) = 0, and the mapping (1.38) as y = f(x).

As we know,

F ′
x(x, y) =


∂F1
∂x1

· · · ∂F1
∂xn... . . . ...

∂Fm
∂x1

· · · ∂Fm
∂xn

 (x, y) ;

F ′
y(x, y) =


∂F1
∂y1

· · · ∂F1
∂ym... . . . ...

∂Fm
∂y1

· · · ∂Fm
∂ym

 (x, y) .

We remark that the matrix F ′
y(x, y) is square and hence invertible if and

only if its determinant is nonzero. In the case n = 1, it reduces to a single
element, and in that case the invertibility of F ′

y(x, y) is equivalent to the
condition that that single element is nonzero. As usual, we shall denote the
matrix inverse to F ′

y(x, y) by
[
F ′
y(x, y)

]−1.

We now state the main result of the present section.
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Theorem 1.19 (The Implicit Function Theorem). Suppose F : Ω → Rm is
a vector-valued function defined in a region Ω ⊂ Rn+m and F ∈ C(p)(Ω),

where p ≥ 1. Suppose (x0, y0) ∈ Ω where x0 ∈ Rn and y0 ∈ Rm, satisfies
that

(i) F (x0, y0) = 0 ,

(ii) F ′
y (x0, y0) is invertible.

Then there exist n-dimensional open rectangle U and m-dimensional open
rectangle V with x0 ∈ U , y0 ∈ V , U ×V ⊂ Ω and a function f ∈ C(p) (U ;V )

such that

F (x, y) = 0 if and only if y = f(x) for (x, y) ∈ U × V .

Moreover, the derivative mapping of the function f at the points x ∈ U can
be computed from the formula

f ′(x) = −
[
F ′
y(x, f(x))

]−1 [
F ′
x(x, f(x))

]
. (1.39)

Proof. The proof of the theorem will rely on Proposition 1.18 and the ele-
mentary properties of determinants. We shall break it into stages, reasoning
by induction. For m = 1, the theorem is the same as Proposition 1.18
and is therefore true. Suppose the theorem is true for dimension m− 1. We
shall show that it is then valid for dimension m.

Step 1. By hypothesis (ii), the determinant of F ′
y(x0, y0) is nonzero at

the point (x0, y0) ∈ Rn+m. Consequently at least one element of the last row
of this matrix is nonzero. Up to a change in the notation, we may assume
that the element ∂Fm

∂ym
(x0, y0) is nonzero. Since F ∈ C1(Ω), ∂Fm

∂ym
is nonzero

in some neighborhood of the point (x0, y0) .

Step 2. Then applying Proposition 1.18 to the relation

Fm (x1, . . . , xn, y1, . . . , ym) = 0 ,

we find a (n +m − 1)-dimensional open rectangle W and an open interval
V 1 with (x0, (y0)1, . . . , (y0)m−1) ∈ W and (y0)m ∈ V 1 and a function f̃ ∈
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C(p)
(
W ;V 1

)
such that

Fm (x1, . . . , xn, y1, . . . , ym) = 0 if and only if
ym = f̃ (x1, . . . , xn, y1, . . . , ym−1) for all (x, y) ∈W × V 1 .

Step 3. Substituting the resulting expression yn = f̃ (x, y1, . . . , ym−1)

for the variable yn in the first m − 1 equations of (1.37) we obtain m − 1

relations

Φ1 (x, y1, . . . , ym−1)

:= F1

(
x, y1, . . . , ym−1, f̃ (x, y1, . . . , ym−1)

)
= 0 ;

...
Φm−1 (x, y1, . . . , ym−1)

:= Fn−1

(
x, y1, . . . , ym−1, f̃ (x, y1, . . . , ym−1)

)
= 0 .

(1.40)

It is clear that Φi ∈ C(p) (W ) (i = 1, . . . ,m− 1), and

Φi (x0; (y0)1, . . . , (y0)m−1) = 0 (i, . . . ,m− 1) .

By definition of the functions Φi, for 1 ≤ i, j ≤ m− 1,

∂Φi

∂yj
(x, y1, . . . , ym−1) =

∂Fi

∂yj
(x, y1, . . . , ym−1, f̃ (x, y1, . . . , ym−1))

+
∂Fi

∂ym
(x, y1, . . . , ym−1, f̃ (x, y1, . . . , ym−1))

∂f̃

∂yi
(x, y1, . . . , ym−1) .

(1.41)

Since
Fm

(
x, y1, . . . , ym−1, f̃ (x, y1, . . . , yn−1)

)
≡ 0

we have for 1 ≤ j ≤ m− 1,

∂Fm

∂yj
(x, y1, . . . , ym−1, f̃ (x, y1, . . . , ym−1))

+
∂Fm

∂ym
(x, y1, . . . , ym−1, f̃ (x, y1, . . . , ym−1))

∂f̃

∂yj
(x, y1, . . . , ym−1) ≡ 0 .

(1.42)
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Taking account of relations (1.41) and (1.42) and the properties of determi-
nants, we can now observe that

det


∂F1
∂y1

· · · ∂F1
∂ym... . . . ...

∂Fm
∂y1

· · · ∂Fm
∂ym



= det


∂F1
∂y1

+ ∂F1
∂yn

· ∂f̃
∂y1

· · · ∂F1
∂ym−1

+ ∂F1
∂ym

· ∂f̃
∂ym−1

∂F1
∂ym

... . . . ...
...

∂Fm
∂y1

+ ∂Fm
∂ym

· ∂f̃
∂y1

· · · ∂Fm
∂ym−1

+ ∂Fm
∂ym

· ∂f̃
∂ym−1

∂Fm
∂ym



= det


∂Φ1
∂y1

· · · ∂Φ1
∂ym−1

∂Fm
∂ym

... . . . ...
...

∂Φm−1

∂y1
· · · ∂Φm−1

∂ym−1

∂Fm−1

∂ym

0 · · · 0 ∂Fm
∂ym

 6= 0 .

Since ∂Fm
∂ym

6= 0, thus

det


∂Φ1
∂y1

· · · ∂Φ1
∂ym−1

... . . . ...
∂Φm−1

∂y1
· · · ∂Φm−1

∂ym−1

 (x0, (y0)1, . . . (y0)m−1) 6= 0 .

Then by the induction hypothesis there exist a n-dimensional open rect-
angle U , a (m − 1)-dimensional open rectangle V m−1 so that x0 ∈ U

and ((y0)1, . . . , (y0)m−1) ∈ V and U × V m−1 ⊂ W ; and a mapping g ∈
C(p)

(
U ;V m−1

)
such that for (x, y1, . . . , ym−1) ∈ U × V m−1

Φ(x, y1, . . . , ym−1) = 0 if and only if yi = gi(x) for each 1 ≤ i ≤ m− 1 .

Step 4. Let V = V m−1 × V 1, then V is a m-dimensional open rectangle
with y0 ∈ V . Clearly U ×V ⊂W ×V 1 ⊂ Ω and (x0, y0) ∈ U ×V . We define
f : U → V by

fi(x) = gi(x) for x ∈ U, 1 ≤ i ≤ m− 1;

fm(x) = f̃(x, g1(x), · · · , gm−1(x)) for x ∈ U .
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First of all, f is well-defined since g : U → V m−1, (x, g1(x), . . . , gm−1(x)) ∈
U × V m−1 ⊂W ; since f̃ :W 7→ V 1,

f(x) = (f1(x), · · · , fm−1(x), fm(x)) ∈ V m−1 × V 1 = V .

Moreover, f ∈ C(p)(U ;V ), since g ∈ C(p)(U ;V m−1) and f̃ ∈ C(p)(W ;V 1).
It’s easy to see that for (x, y) ∈ U × V ,

F (x, y) = 0 if and only if y = f(x) .

To complete the proof of the theorem it remains only to verify formula
(1.39). Since

F (x, f(x)) ≡ 0, for x ∈ U (1.43)

and f ∈ C(p) (U ;V ) and F ∈ C(p) (Ω) , where p ≥ 1, it follows that F (·, f(·)) ∈
C(p) (U ;Rn) and, differentiating the identity (1.43) we obtain

F ′
x(x, f(x)) + F ′

y(x, f(x)) · f ′(x) = 0 .

Taking account of the invertibility of the matrix F ′
y(x, y) in a neighborhood

of the point (x0, y0) , we find by this equality that

f ′(x) = −
[
F ′
y(x, f(x))

]−1 [
F ′
x(x, f(x))

]
,

and the theorem is completely proved.

1.5 Some Corollaries of the Implicit Function Theorem

1.5.1. The Inverse Function Theorem A mapping f : U → V, where
U and V are open subsets of Rn, is called a C(p)-diffeomorphism, where
p ∈ N0 ∪ {∞} , if f is a bijection; f ∈ C(p)(U ;V ) and f−1 ∈ C(p)(V ;U). As
we know, a C(0)-diffeomorphism is a homeomorphism.

The basic idea of the following frequently used theorem is that if the
differential of a mapping is invertible at a point, then the mapping itself is
invertible in some neighborhood of the point.
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Theorem 1.20 (Inverse Function Theorem). Let f : Ω → Rn be a mapping
of a region Ω ⊂ Rn such that f ∈ C(p) (Ω;Rn) for p ≥ 1. If f ′(a) is invertible
for some a ∈ Ω, then there exists an open neighborhood U ⊂ Ω of a and an
open neighborhood V of f(a) such that f : U → V is a C(p)-diffeomorphism.
Moreover, if x ∈ U and y = f(x) ∈ V , then(

f−1
)′
(y) =

(
f ′(x)

)−1
.

Proof. We define

F (x, y) = f(x)− y for x ∈ Ω and y ∈ Rn .

Then F is defined in the neighborhood Ω× Rn of the point (a, f(a)) ∈ R2n

and
F ′
x(x, y) = f ′(x), F ′

y(x, y) = −I

where I is the identity mapping on Rn. By hypotheses of the theorem the
mapping F (x, y) has the property that

F ∈ C(p) (Ω× Rn;Rn) , p ≥ 1 ;

F (a, f(a)) = 0 ;

F ′
x (a, f(a)) = f ′ (a) is invertible .

By the implicit function theorem there exist open neighborhoods W , V of
the points a, f(a), respectively; and a mapping g ∈ C(p) (V ;W ) such that
for all (x, y) ∈W × V ,

f(x)− y = 0 if and only if x = g(y) ; (1.44)

and
g′(y) = −

[
F ′
x(g(y), y)

]−1 [
F ′
y(g(y), y)

]
=
[
f ′(g(y))

]−1
.

Note that g : V →W is injective. Indeed if g(y1) = g(y2) for y1, y2 ∈ V , by
(1.44), we y1 = f(g(y1)) = g(g(y2)) = y2. So let U = g(V ), then g : V → U

is bijective and it follows form (1.44) that

g−1 = f i.e., g = f−1 .
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However, our proof is not completed since we have to show that U is an
open neighborhood of a.

Since f(a) ∈ V , a = g(f(a)) ∈ g(V ) = U . It suffices to show that U is
open. Note that

U = g(V ) =W ∩ f−1(V )

and f is continuous, so U is open.

The following is an immediate consequence of the inverse function the-
orem.

Corollary 1.21 (Open Mapping). Let f be a C(1)-mapping of an open
set E ⊂ Rn into Rn. If f ′(x) is invertible for every x ∈ E, then f is an open
mapping, i.e., f(U) is open for every open U ⊂ E.

Proof. Since for any open U ⊂ E and any x ∈ U , there exists a open
neighborhood Vx ⊂ U of x so that f is a C(1)-diffeomorphism from Vx onto
f(Vx), and hence f(Vx) is open. So f(U) = ∪x∈Uf(Vx) is open.

Remark 1.13. The hypotheses made in this theorem ensure that each point
x ∈ E has a neighborhood in which f is 1 − 1. This may be expressed by
saying that f is locally one-to-one in E. But f need not be 1− 1 in E under
these circumstances.

We shall now give several examples that illustrate the inverse function
theorem. The inverse function theorem is very often used in converting from
one coordinate system to another. The simplest version of such a change of
coordinates was studied in analytic geometry and linear algebra and has the
form 

y1
...
yn

 =


a11 · · · an1
... . . . ...
a1n · · · ann




x1
...
xn


This linear transformation A : Rn

x → Rn
y has an inverse A−1 : Rn

y → Rn
x

defined on the entire space Rm
y if and only if the matrix (aij) is invertible,

that is, det (aij) 6= 0 The inverse function theorem is a local version of this
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proposition, based on the fact that in a neighborhood of a point a smooth
mapping behaves approximately like its differential at the point.

Example 1.9. (Polar Coordinates) The mapping f : R+ × R → R2 of the
half-plane R+ ×R =

{
(ρ, φ) ∈ R2 | ρ ≥ 0

}
onto the plane R2 defined by the

formula
x = ρ cosφ
y = ρ sinφ

(1.45)

is illustrated in Figture 4.500 8 Differential Calculus in Several Variables

Fig. 8.5

Since V = Iy , it follows that V is a neighborhood of y0. This means that under
hypotheses 10, 20, and 30 the image y0 = f (x0) of x0 ∈G, which is an interior point
of G, is an interior point of the image f (G) of G. By formula (8.114) the matrix
g′(y0) is invertible. Therefore the mapping g : V → U has properties 10, 20, and
30 relative to the domain V and the point y0 ∈ V . Hence by what has already been
proved x0 = g(y0) is an interior point of U = g(V ).

Since by (8.114) hypotheses 10, 20, and 30 obviously hold at any point y ∈ V ,
any point x = g(y) is an interior point of U . Thus U is an open (and obviously even
connected) neighborhood of x0 ∈R

m.
We have now verified that the mapping f :U → V satisfies all the conditions of

Definition 1 and the assertion of Theorem 1. �

We shall now give several examples that illustrate Theorem 1.
The inverse function theorem is very often used in converting from one coordi-

nate system to another. The simplest version of such a change of coordinates was
studied in analytic geometry and linear algebra and has the form

⎛

⎜
⎝

y1

...

ym

⎞

⎟
⎠=

⎛

⎜
⎝

a1
1 · · · a1

m
...

. . .
...

am
1 · · · am

m

⎞

⎟
⎠

⎛

⎜
⎝

x1

...

xm

⎞

⎟
⎠

or, in compact notation, yj = a
j
i xi . This linear transformation A : Rm

x → R
m
y has

an inverse A−1 :Rm
y →R

m
x defined on the entire space R

m
y if and only if the matrix

(a
j
i ) is invertible, that is, det(aj

i ) �= 0.
The inverse function theorem is a local version of this proposition, based on the

fact that in a neighborhood of a point a smooth mapping behaves approximately like
its differential at the point.

Example 1 (Polar coordinates) The mapping f :R2+ → R2 of the half-plane R2+ =
{(ρ,ϕ) ∈R

2 | ρ ≥ 0} onto the plane R
2 defined by the formula

x = ρ cosϕ,

y = ρ sinϕ,
(8.115)

is illustrated in Fig. 8.5.

Figure 4: Polar coordinates

The Jacobian of this mapping, as can be easily computed, is ρ, that is,
it is nonzero in a neighborhood of any point (ρ, φ), where ρ > 0. Therefore
formulas (1.45) are locally invertible and hence locally the numbers ρ and φ
can be taken as new coordinates of the point previously determined by the
Cartesian coordinates x and y.

The coordinates (ρ, φ) are a well known system of curvilinear coordinates
on the plane-polar coordinates. Their geometric interpretation is shown
in Figture 4. We note that by the periodicity of the functions cosφ and
sinφ the mapping (1.45) is only locally a diffeomorphism when ρ > 0; it is
not bijective on the entire plane. That is the reason that the change from
Cartesian to polar coordinates always involves a choice of a branch of the
argument φ (that is, an indication of its range of variation).

Example 1.10 (Spherical Coordinates). Polar coordinates (ρ, ψ, φ) in three-
dimensional space R3 are called spherical coordinates. They are connected
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with Cartesian coordinates by the formulas

z = ρ cosψ ;

y = ρ sinψ sinφ ;

x = ρ sinψ cosφ .

(1.46)

The geometric meaning of the parameters ρ, ψ, and φ is shown in Figture 5.8.6 Some Corollaries of the Implicit Function Theorem 501

Fig. 8.6

The Jacobian of this mapping, as can be easily computed, is ρ, that is, it is
nonzero in a neighborhood of any point (ρ,ϕ), where ρ > 0. Therefore formulas
(8.115) are locally invertible and hence locally the numbers ρ and ϕ can be taken as
new coordinates of the point previously determined by the Cartesian coordinates x

and y.
The coordinates (ρ,ϕ) are a well known system of curvilinear coordinates on the

plane – polar coordinates. Their geometric interpretation is shown in Fig. 8.5. We
note that by the periodicity of the functions cosϕ and sinϕ the mapping (8.115) is
only locally a diffeomorphism when ρ > 0; it is not bijective on the entire plane.
That is the reason that the change from Cartesian to polar coordinates always in-
volves a choice of a branch of the argument ϕ (that is, an indication of its range of
variation).

Polar coordinates (ρ,ψ,ϕ) in three-dimensional space R
3 are called spherical

coordinates. They are connected with Cartesian coordinates by the formulas

z= ρ cosψ,

y = ρ sinψ sinϕ,

x = ρ sinψ cosϕ.

(8.116)

The geometric meaning of the parameters ρ, ψ , and ϕ is shown in Fig. 8.6.
The Jacobian of the mapping (8.116) is ρ2 sinψ , and so by Theorem 1 the map-

ping is invertible in a neighborhood of each point (ρ,ψ,ϕ) at which ρ > 0 and
sinψ �= 0.

The sets where ρ = const, ϕ = const, or ψ = const in (x, y, z)-space obviously
correspond to a spherical surface (a sphere of radius ρ), a half-plane passing through
the z-axis, and the surface of a cone whose axis is the z-axis respectively.

Thus in passing from coordinates (x, y, z) to coordinates (ρ,ψ,ϕ), for example,
the spherical surface and the conical surface are flattened; they correspond to pieces
of the planes ρ = const and ψ = const respectively. We observed a similar phe-
nomenon in the two-dimensional case, where an arc of a circle in the (x, y)-plane
corresponded to a closed interval on the line in the plane with coordinates (ρ,ϕ)

(see Fig. 8.5). Please note that this is a local straightening.

Figure 5: Spherical coordinates

The Jacobian of the mapping (1.46) is ρ2 sinψ, and so by Theorem 1
the mapping is invertible in a neighborhood of each point (ρ, ψ, φ) at which
ρ > 0 and sinψ 6= 0.

The sets where ρ = const, φ = const, or ψ = const in (x, y, z)-space
obviously correspond to a spherical surface, a half-plane passing through the
z-axis, and the surface of a cone whose axis is the z-axis respectively. Thus
in passing from coordinates (x, y, z) to coordinates (ρ, ψ, φ), for example,
the spherical surface and the conical surface are flattened; they correspond
to pieces of the planes ρ = const and ψ = const respectively. We observed
a similar phenomenon in the two-dimensional case, where an arc of a circle
in the (x, y)-plane corresponded to a closed interval on the line in the plane
with coordinates (ρ, φ) (see Figture 4). Please note that this is a local
straightening.

In the n-dimensional case polar coordinates are introduced by the rela-
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tions
x1 = ρ cosφ1

x2 = ρ sinφ1 cosφ2

...
xn−1 = ρ sinφ1 sinφ2 · · · sinφn−2 cosφn−1

xn = ρ sinφ1 sinφ2 · · · sinφn−2 sinφn−1

The Jacobian of this transformation is

ρn−1 sinn−2 φ1 sinn−3 φ2 · · · sinφn−2

and by the inverse function theorem it is also locally invertible everywhere
where this Jacobian is nonzero.

Example 1.11 (The General Idea of Local Rectification of Curves). New
coordinates are usually introduced for the purpose of simplifying the analytic
expression for the objects that occur in a problem and making them easier
to visualize in the new notation. Suppose for example, a curve in the plane
R2 is defined by the equation

F (x, y) = 0

Assume that F is a smooth function, that the point (x0, y0) lies on the curve,
that is, F (x0, y0) = 0, and that this point is not a critical point of F. For
example, suppose F ′

y(x, y) 6= 0. Let us try to choose coordinates ξ, η so that
in these coordinates a closed interval of a coordinate line, for example, the
line η = 0, corresponds to an arc of this curve.

We set
ξ = x− x0, η = F (x, y)

The Jacobi matrix (
1 0

F ′
x F ′

y

)
(x, y)

of this transformation has as its determinant the number F ′
y(x, y), which

by assumption is nonzero at (x0, y0) . Then by the inverse function theo-
rem, this mapping is a diffeomorphism of a neighborhood of (x0, y0) onto
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a neighborhood of the point (ξ, η) = (0, 0). Hence, inside this neighbor-
hood, the numbers ξ and η can be taken as new coordinates of points lying
in a neighborhood of (x0, y0) . In the new coordinates, the curve obviously
has the equation η = 0, and in this sense we have indeed achieved a local
rectification of it (see Figture 6).
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Fig. 8.7

Fig. 8.8

8.6.2 Local Reduction of a Smooth Mapping to Canonical Form

In this subsection we shall consider only one question of this type. To be specific, we
shall exhibit a canonical form to which one can locally reduce any smooth mapping
of constant rank by means of a suitable choice of coordinates.

We recall that the rank of a mapping f :U →R
n of a domain U ⊂R

m at a point
x ∈ U is the rank of the linear transformation tangent to it at the point, that is, the
rank of the matrix f ′(x). The rank of a mapping at a point is usually denoted rank
f (x).

Theorem 2 (The rank theorem) Let f : U → R
n be a mapping defined in a neigh-

borhood U ⊂ R
m of a point x0 ∈ R

m. If f ∈ C(p)(U ;Rn), p ≥ 1, and the mapping
f has the same rank k at every point x ∈ U , then there exist neighborhoods O(x0)

of x0 and O(y0) of y0 = f (x0) and diffeomorphisms u= ϕ(x), v = ψ(y) of those
neighborhoods, of class C(p), such that the mapping v = ψ ◦ f ◦ ϕ−1(u) has the
coordinate representation

(
u1, . . . , uk, . . . , um

)= u �→ v = (
v1, . . . , vn

)= (
u1, . . . , uk,0, . . . ,0

)
(8.119)

in the neighborhood O(u0)= ϕ(O(x0)) of u0 = ϕ(x0).

In other words, the theorem asserts (see Fig. 8.8) that one can choose coordinates
(u1, . . . , um) in place of (x1, . . . , xm) and (v1, . . . , vn) in place of (y1, . . . , yn) in

Figure 6: Local rectification of curves

1.5.2. Local Reduction of a Smooth Mapping to Canonical Form
In this subsection we shall consider only one question of this type. To be
specific, we shall exhibit a canonical form to which one can locally reduce
any smooth mapping of constant rank by means of a suitable choice of
coordinates.

We recall that the rank of a mapping f : Ω → Rn of a domain Ω ⊂ Rn

at a point x ∈ Ω is the rank of the linear transformation tangent to it at
the point, that is, the rank of the matrix f ′(x). The rank of a mapping at
a point is usually denoted rank f(x).

Theorem 1.22 (The Rank Theorem). Let f : U → Rm be a mapping
defined in an open neighborhood U ⊂ Rm of a point x0 ∈ Rn. If f ∈
C(p) (U ;Rm) for some p ≥ 1, and the mapping f has the same rank k at
every point x ∈ U, then there exist open neighborhoods O (x0) of x0 and
O (y0) of y0 = f (x0) and diffeomorphisms u = φ(x), v = ψ(y) of those
neighborhoods, of class C(p), such that the mapping v = ψ o f ◦φ−1(u) has
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the coordinate representation

(u1, . . . , uk, . . . , un) = u 7→ v = (v1, . . . , vm) = (u1, . . . , uk, 0, . . . , 0) (1.47)

in the neighborhood O (u0) = φ (O (x0)) of u0 = φ (x0).

In other words, the theorem asserts (see Figture 7) that one can choose
coordinates (u1, . . . , un) in place of (x1, . . . , xn) and (v1, . . . , vm) in place of
(y1, . . . , ym) in such a way that locally the mapping has the form (1.47) in
the new coordinates, that is, the canonical form for a linear transformation
of rank k.
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Fig. 8.7

Fig. 8.8

8.6.2 Local Reduction of a Smooth Mapping to Canonical Form

In this subsection we shall consider only one question of this type. To be specific, we
shall exhibit a canonical form to which one can locally reduce any smooth mapping
of constant rank by means of a suitable choice of coordinates.

We recall that the rank of a mapping f :U →R
n of a domain U ⊂R

m at a point
x ∈ U is the rank of the linear transformation tangent to it at the point, that is, the
rank of the matrix f ′(x). The rank of a mapping at a point is usually denoted rank
f (x).

Theorem 2 (The rank theorem) Let f : U → R
n be a mapping defined in a neigh-

borhood U ⊂ R
m of a point x0 ∈ R

m. If f ∈ C(p)(U ;Rn), p ≥ 1, and the mapping
f has the same rank k at every point x ∈ U , then there exist neighborhoods O(x0)

of x0 and O(y0) of y0 = f (x0) and diffeomorphisms u= ϕ(x), v = ψ(y) of those
neighborhoods, of class C(p), such that the mapping v = ψ ◦ f ◦ ϕ−1(u) has the
coordinate representation

(
u1, . . . , uk, . . . , um

)= u �→ v = (
v1, . . . , vn

)= (
u1, . . . , uk,0, . . . ,0

)
(8.119)

in the neighborhood O(u0)= ϕ(O(x0)) of u0 = ϕ(x0).

In other words, the theorem asserts (see Fig. 8.8) that one can choose coordinates
(u1, . . . , um) in place of (x1, . . . , xm) and (v1, . . . , vn) in place of (y1, . . . , yn) in

Figure 7: The rank theorem

Proof. In order to avoid relabeling the coordinates and the neighborhood U,
we shall assume that at every point x ∈ U, the principal minor of order k in
the upper left corner of the matrix f ′(x) is nonzero.

Let us consider the mapping φ defined in a neighborhood U of x0 by the
equalities

φ1 (x1, . . . , xn) = f1 (x1, . . . , xn) ,

...
φk (x1, . . . , xn) = fk (x1, . . . , xn) ,

φk+1 (x1, . . . , xn) = xk+1 ,

...
φn (x1, . . . , xn) = xn .

(1.48)
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Then

φ′(x) =



∂f1
∂x1

· · · ∂f1
∂xk

∂f1
∂xk+1

· · · ∂f1
∂xn

... . . . ...
... . . . ...

∂fk
∂x1

· · · ∂fk
∂xk

∂fk
∂xk+1

· · · ∂fk
∂xn

1 0

0
. . .

0 1


(x) ,

and by assumption its determinant is nonzero in U . By the inverse function
theorem, φ is a C(p)-diffeomorphism of some open neighborhood Õ (x0) ⊂ U

of x0 onto an open neighborhood Õ (u0) = φ
(
Õ (x0)

)
of u0 = φ (x0).

We now consider the composite function

g := f ◦ φ−1 : Õ (u0) → Rm .

I) Since φ(φ−1(u)) = u for all u ∈ Õ (u0) and φj = fj for 1 ≤ j ≤ k, we
see that

g1 (u1, . . . , un) = u1 ,

...
gk (u1, . . . , un) = uk .

(1.49)

II) Since the mapping φ−1 : Õ (u0) → Õ (x0) has maximal rank n at each
point u ∈ Õ (u0) , and the mapping f : Õ (x0) → Rn

y has rank k at
every point x ∈ Õ (x0) , it follows, as is known from linear algebra,
that the matrix

g′(u) = f ′
(
φ−1(u)

) (
φ−1

)′
(u)

has rank k at every point u ∈ Õ (u0).
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Direct computation of the Jacobi matrix of the mapping (1.49) yields

1 0
. . . 0

0 1
∂gk+1

∂u1
· · · ∂gk+1

∂uk

∂gk+1

∂uk+1
· · · ∂gk+1

∂un

... . . . ...
... . . . ...

∂gm
∂u1

· · · ∂gm
∂uk

∂gm
∂uk+1

· · · ∂gm
∂un


,

hence at each point u ∈ Õ (u0) we obtain

∂gj
∂ui

(u) = 0 for k + 1 ≤ i ≤ n , k + 1 ≤ j ≤ m.

Thus, assuming that Õ (u0) is convex (which can be achieved by
shrinking Õ (u0) to a ball with center at u0, for example), we can con-
clude from this that the functions gk+1, . . . , gm really are independent
of the variables uk+1, . . . , un. So for k + 1 ≤ j ≤ m and u ∈ Õ (u0),
we can write gj(u1, · · · , uk) instead of gj(u1, · · · , un).

At this point we can exhibit the mapping ψ. We set

ψ1(y1, · · · , ym) = y1

...
ψk(y1, · · · , ym) = yk

ψk+1(y1, · · · , ym) = yk+1 − gk+1 (y1, . . . , yk)

...
ψm(y1, · · · , ym) = ym − gm (y1, . . . , yk)

Since y0 = f(x0) , u0 = φ(x0) and φj = fj for 1 ≤ j ≤ k, gk+1, · · · , gm
are well defined in an open neighborhood of y0. Thus the mapping ψ is
defined in an open neighborhood of y0 and belongs to class C(p) in that
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neighborhood. Moreover,

ψ′(y) =



1 0
. . . 0

0 1

−∂gk+1

∂y1
· · · −∂gk+1

∂yk
1 0

... . . . ... . . .
−∂gm

∂y1
· · · −∂gm

∂yk
0 1


.

Its determinant equals 1 and so by the inverse function theorem the mapping
ψ is a C(p)-diffeomorphism of some neighborhood Õ (y0) of y0 ∈ Rn

y onto a
neighborhood Õ (v0) = ψ

(
Õ (y0)

)
of v0 ∈ Rn

v .

Note that y0 = f(x0) = g(u0), in an open neighborhood O (u0) ⊂ Õ (u0)

of u0 so small that g (O (u0)) ⊂ Õ (y0) , the mapping

ψ ◦ f ◦ φ−1 : O (u0) → Õ (v0)

is a mapping of smoothness p from this neighborhood onto some open neigh-
borhood O (v0) ⊂ Õ (v0) of v0 ∈ Rn

v and that it has the canonical form:

v1 := (ψ1 ◦ f ◦ φ−1)(u) = ψ1(g(u)) = u1 ,

...
vk := (ψk ◦ f ◦ φ−1)(u) = ψk(g(u)) = uk ,

vk+1 := (ψk+1 ◦ f ◦ φ−1)(u) = ψk+1(g(u)) = 0 ,

...
vm := (ψm ◦ f ◦ φ−1)(u) = ψm(g(u)) = 0 .

Setting φ−1 (O (u0)) := O (x0) and ψ−1 (O (v0)) := O (y0) , we obtain the
neighborhoods of x0 and y0 whose existence is asserted in the theorem.

1.6 The Inverse Function Theorem

The inverse function theorem states, roughly speaking, that a continuously
differentiable mapping f is invertible in a neighborhood of any point x at
which the linear transformation f ′(x) is invertible.
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We will introduce a fixed point theorem that is valid in arbitrary com-
plete metric spaces. It will be used in the proof of the inverse function
theorem. Let X be a metric space, with metric d. If φ maps X into X and
if there is a number λ < 1 such that

d(φ(x), φ(y)) ≤ λd(x, y) ,

for all x, y ∈ X, then φ is said to be a contraction of X into X.

Lemma 1.23 (Contraction Principle). If X is a complete metric space, and
if φ is a contraction of X into X, then there exists one and only one x ∈ X

such that φ(x) = x. In other words, φ has a unique fixed point.

Now we are prepared to prove the inverse function theorem.

Theorem 1.24 (Inverse Function Theorem). Suppose f is a C(1)-mapping
of an open set E ⊂ Rn into Rn, f ′(a) is invertible for some a ∈ E. Then

(i) there exist open sets U and V in Rn such that a ∈ U , f(a) ∈ V , f is
one-to-one on U, and f(U) = V ;

(ii) if g is the inverse of f (which exists, by (i)), defined in V , by

g(f(x)) = x for x ∈ U ,

then g ∈ C(1)(V ).

Remark 1.14. Since the linear map f ′(a) is the best linear approximation
to f at a, it is plausible that f is invertible in a neighborhood of a if and
only if f ′(a) is also.

Remark 1.15. Although the inverse function theorem apparently reduces
the invertibility of f on an open set to a single number at a, because f is con-
tinuously differentiable, the invertibility of the derivative at a is equivalent
to its invertibility in a neighborhood of a.

Remark 1.16. Writing the equation y = f(x) in component form, we arrive
at the following interpretation of the conclusion of the theorem: The system
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of n equations
yi = fi (x1, . . . , xn) (1 ≤ i ≤ n)

can be solved for x1, . . . , xn in terms of y1, . . . , yn, if we restrict x and y

to small enough neighborhoods of a and b; the solutions are unique and
continuously differentiable.

Without loss of generality, suppose that f(a) = 0.

Proof of (i). Since f ′ is continuous at a, there is an open ball U with center
at a so that U ⊂ E, and∥∥f ′(x)− f ′(a)

∥∥ < 1

2‖f ′(a)−1‖
(x ∈ U) . (1.50)

We associate to each fixed y ∈ Rn a function φ, defined by

φy(x) = x+ f ′(a)−1(y − f(x)) (x ∈ E) .

Note that x is a fixed point of φy if and only if f(x) = y.

Since φ′
y(x) = I − f ′(a)−1f ′(x) = f ′(a)−1 (f ′(a)− f ′(x)) , so we have

∥∥φ′
y(x)

∥∥ < 1

2
(x ∈ U)

Hence by Theorem 1.8,

‖φy (x1)− φy (x2)‖ ≤ 1

2
‖x1 − x2‖ (x1, x2 ∈ U) , (1.51)

which implies that φy has at most one fixed point in U . So f(x) = y for at
most one x ∈ U . Thus f is 1− 1 in U . In fact, it follows from (1.51) that

‖x1 − x2‖ ≤ 2‖f ′(a)−1‖‖f(x1)− f(x2)‖ (x1, x2 ∈ U) , (1.52)

which implies that the inverse of f is continuous, as we will see later.

Next, put V = f(U). We shall show that V is open. Let y0 ∈ V , i.e.,
y0 = f (x0) for some x0 ∈ U. We will show that y ∈ V whenever ‖y − y0‖
is sufficiently small. To this end, for the given y we will use contraction
theorem to show that there esists a fixed point of φy in U . Take a closed
ball B = B(x0, r) ⊂ U , we shall show that φy maps B into B if ‖y − y0‖
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is small. Then it follows that φy has a fixed point x ∈ B and for this x,
f(x) = y. So V = f(U) is open.

Observe that, for x ∈ B̄,

‖φy(x)− x0‖ ≤ ‖φy(x)− φy (x0)‖+ ‖φy (x0)− x0‖

≤ 1

2
‖x− x0‖+

∥∥f ′(a)−1
∥∥ ‖y − y0‖

≤ r

2
+
∥∥f ′(a)−1

∥∥ ‖y − y0‖ ,

hence φy(x) ∈ B if
∥∥f ′(a)−1

∥∥ ‖y − y0‖ ≤ r
2 . This proves part (i) of the

theorem.

Proof of (ii). Pick y and y+k ∈ V. Let x = g(y) ∈ U , and x+h = g(y+k) ∈
U . Hence y = f(x), y + k = f(x+ h). It follows from (1.52) that

‖g(y + k)− g(y)‖ = ‖x+ h− x‖ = ‖h‖

≤ 2‖f ′(a)−1‖‖f(x+ h)− f(x)‖

= 2‖f ′(a)−1‖‖k‖ .

(1.53)

so g is continuous at y. Moreover, it follows from (1.50) that f ′(x) is invert-
ible. Then

g(y + k)− g(y)− f ′(x)−1k = x+ h− x− f ′(x)−1k

= f ′(x)−1{f ′(x)h− [f(x+ h)− f(x)]} ,

and hence
‖g(y + k)− g(y)− f ′(x)−1k‖

‖k‖

≤ ‖f ′(x)−1‖‖f(x+ h)− f(x)− f ′(x)h‖
‖h‖

‖h‖
‖k‖

≤ 2‖f ′(a)−1‖‖f ′(x)−1‖‖f(x+ h)− f(x)− f ′(x)h‖
‖h‖

.

As k → 0, (1.53) shows that h → 0. The right side of the last inequality
thus tends to 0. Hence the same is true of the left. We have thus proved
that g′(y) = f ′(x)−1; i.e.,

g′(y) =
[
f ′(g(y))

]−1
(y ∈ V ) .
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Finally, note that g is a continuous mapping of V onto U , that f ′ is a
continuous mapping of U into the set GLn(R) of all invertible elements of
L (Rn), and that inversion is a continuous mapping of GLn(R) onto GLn(R),
by Theorem 1.1. If we combine these facts, we see that g ∈ C′(V ). This
completes the proof.

A The Basic Theorems of Differential Calcu-
lus

A.1 Mean-Value Theorems

A.1.1. Fermat’s Lemma and Rolle’s Theorem A point x0 ∈ E ⊂ R
is called a local maximum point (resp. local minimum point) and the value
of a function f : E → R at that point a local maximum value (resp. local
minimum value), if there exists a neighborhood UE (x0) of x0 in E such that

f(x) ≤ f (x0) ( resp. f(x) ≥ f (x0)) for all x ∈ UE (x0) .

If the strict inequality f(x) < f (x0) (resp. f(x) > f (x0)) holds at ev-
ery point x ∈ UE (x0) \{x0}, the point x0 is called strict local maximum
point(resp. strict local minimum point) and the value of the function f :

E → R a strict local maximum value (resp. strict local minimum value).

The local maximum and minimum points are called local extremum
points and the values of the function at these points local extreme val-
ues of the function. We say an extremum point x0 ∈ E of the function
f : E → R is interior, if x0 is a limit point of both sets {x ∈ E : x < x0}
and {x ∈ E : x > x0}.

Lemma A.1 (Fermat). If a function f : E → R is differentiable at an interior
extremum point x0 ∈ E, then its derivative at x0 is 0: f ′ (x0) = 0.

Proof. By definition of differentiability at x0 we have

f (x0 + h)− f (x0) = f ′ (x0)h+ α (x0;h)h
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where α (x0;h) → 0 as h → x, x0 + h ∈ E. Let us rewrite this relation as
follows:

f (x0 + h)− f (x0) =
[
f ′ (x0) + α (x0;h)

]
h (A.1)

Since x0 is an extremum point, the left-hand side of (A.1) is either non-
negative or non-positive for all values of h sufficiently close to 0 and for which
x0 + h ∈ E. If f ′ (x0) 6= 0, then for h sufficiently close to 0 the quantity
f ′ (x0) + α (x0;h) would have the same sign as f ′ (x0) , since α (x0;h) → 0

as h → 0, x0 + h ∈ E. But the value of h can be both positive or negative,
given that x0 is an interior extremum point.

Thus, assuming that f ′ (x0) 6= 0, we find that the right-hand side of (A.1)
changes sign when h does (for h sufficiently close to 0 ), while the left-hand
side cannot change sign when h is sufficiently close to 0. This contradiction
completes the proof.

Remark A.1. Geometrically Fermat’s lemma is obvious, since it asserts
that at an extremum of a differentiable function the tangent to its graph
is horizontal. (After all, f ′ (x0) is the tangent of the angle the tangent line
makes with the x -axis.) Physically this lemma means that in motion along
a line the velocity must be zero at the instant when the direction reverses
(which is an extremum point!).

Remark A.2. Fermat’s lemma gives a necessary condition for an interior
extremum of a differentiable function. For non-interior extremum points, it
is generally not true that f ′ (x0) = 0.

This lemma and the theorem on the maximum (or minimum) of a con-
tinuous function on a compact interval together imply the following propo-
sition.

Theorem A.2 (Rolle’s Theorem). Let f be a real-valued function that is
continuous on a compact interval [a, b] and differentiable on the open interval
(a, b). If f(a) = f(b), then there exists a point ξ ∈ (a, b) such that f ′(ξ) = 0.
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Proof. Since the function f is continuous on [a, b], there exist points xm, xM
in [a, b] at which it assumes its minimal and maximal values respectively.

If f (xm) = f (xM ) , then the function is constant on [a, b]; and since in
that case f ′(x) ≡ 0 in (a, b), the assertion is obviously true.

If f (xm) < f (xM ) , then, since f(a) = f(b), one of the points xm and
xM must lie in the open interval (a, b). We denote it by ξ. Fermat’s lemma
now implies that f ′(ξ) = 0.

The following theorem states that every function that results from the
differentiation of another function has the intermediate value property: the
image of an interval is also an interval.

Theorem A.3 (Darboux’s Theorem). Let I ⊂ R be an interval. Let f :

I → R be a differentiable function. Then f ′ has the intermediate value
property: If a and b are points in I with a < b, then for every t between
f ′(a) and f ′(b), there exists an ξ in [a, b] such that f ′(ξ) = t.

Proof. If t equals f ′(a) or f ′(b), then setting x equal to a or b, respectively,
gives the desired result. Now assume that t is strictly between f ′(a) and
f ′(b). Without loss of generality, suppose that f ′(b) < t < f ′(a).

Let φ : I → R such that φ(x) = f(x)− tx. Since φ is continuous on the
compact interval [a, b], the maximum value of φ on [a, b] is attained at some
point in [a, b].

Because φ′(a) = f ′(a) − t > 0, we know φ cannot attain its maximum
value at a. (If it did, then (φ(t) − φ(a))/(t − a) ≤ 0 for all t ∈ [a, b],

which implies φ′(a) ≤ 0.) Likewise, because φ′(b) = f ′(b) − t < 0, we
know φ cannot attain its maximum value at b. Therefore, φ must attain
its maximum value at some point ξ ∈ (a, b). Hence, by Fermat’s lemma,
φ′(ξ) = 0, i.e. f ′(ξ) = t.

A.1.2. The Lagrange Mean-Value Theorem The following theorem
is one of the most frequently used and important methods of studying real-
valued functions. Lagrange’s theorem is important in that it connects the
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increment of a function over a finite interval with the derivative of the func-
tion on that interval. Up to now we have not had such a theorem on finite
increments and have characterized only the local (infinitesimal) increment
of a function in terms of the derivative at a given point.

Theorem A.4 (Lagrange’s Theorem). If a real-valued function f is con-
tinuous on a compact interval [a, b] and differentiable on the open interval
(a, b), there exists a point ξ ∈ (a, b) such that

f(b)− f(a) = f ′(ξ)(b− a) . (A.2)

Proof. Consider the auxiliary function

F (x) = f(x)− f(a)− f(b)− f(a)

b− a
(x− a) ,

which is obviously continuous on the compact interval [a, b] and differentiable
on the open interval (a, b) and has equal values at the endpoints:

F (a) = F (b) = 0 .

Applying Rolle’s theorem to F (x), we find a point ξ ∈ (a, b) at which

F ′(ξ) = f ′(ξ)− f(b)− f(a)

b− a
= 0 .

Remark A.3. In geometric language Lagrange’s theorem means that at
some point (ξ, f(ξ)), where ξ ∈ (a, b), the tangent to the graph of the func-
tion is parallel to the chord joining the points (a, f(a)) and (b, f(b)), since
the slope of the chord equals f(b)−f(a)

b−a .

Remark A.4. If x is interpreted as time and f(b)− f(a) as the amount of
displacement over the time b−a of a particle moving along a line, Lagrange’s
theorem says that the velocity f ′(x) of the particle at some time ξ ∈( a, b)
is such that if the particle had moved with the constant velocity f ′(ξ) over
the whole time interval, it would have been displaced by the same amount
f(b) − f(a). It is natural to call f ′(ξ) the average velocity over the time
interval [a, b].
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Example A.1. We note nevertheless that for motion that is not along a
straight line there may be no average speed in the sense of Remark A.4.
Indeed, suppose the particle is moving around a circle of unit radius at
constant angular velocity ω = 1. Its law of motion, as we know, can be
written as

r(t) = (cos t, sin t)

Then
r′(t) = v(t) = (− sin t, cos t)

and ‖v(t)‖ =
√

sin2 t+ cos2 t = 1. The particle is at the same point r(0) =
r(2π) = (1, 0) at times t = 0 and t = 2π and the equality

r(2π)− r(0) = v(ξ)(2π − 0)

would mean that v(ξ) = 0. But this is impossible.

Even so, we shall learn that there is still a relation between the displace-
ment over a time interval and the velocity. It consists of the fact that the
full length L of the path traversed cannot exceed the maximal absolute value
of the velocity multiplied by the time interval of the displacement. What
has just been said can be written in the following more precise form:

‖r(b)− r(a)‖ ≤ sup
t∈(a,b)

‖r′(t)‖|b− a| .

As will be shown later, this natural inequality does indeed always hold. It is
also called Lagrange’s finite-increment theorem, while relation (A.2), which
is valid only for real-valued functions, is often called the Lagrange mean-
value theorem (the role of the mean in this case is played by both the value
f ′(ξ) of the velocity and by the point ξ between a and b).

Now we give some applications of the Lagrange mean-value theorem.

Proposition A.5 (Criterion for Monotonicity). Let f be a differentiable
real-valued function on an open interval I ⊂ R.

(i) If f ′ is nonnegative (resp. positive) at every point of I, then f is
increasing (resp. strictly increasing) on I.
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(ii) If f ′ is nonzero at every point of I, then f is strictly monotone on I.

Proof. To show part (i), indeed, if x1 and x2 are two points of the interval
and x1 < x2, that is, x2− x1 > 0, then by formula (A.2)

f (x2)− f (x1) = f ′(ξ) (x2 − x1) , where x1 < ξ < x2 ;

and therefore, the sign of the difference on the left-hand side of this equality
is the same as the sign of f ′(ξ).

To show part (ii), note that by the intermediate value property of f ′,
either f ′(x) > 0 for all x ∈ I or f ′(x) < 0 for all x ∈ I, then the desired
result follows form (i).

Proposition A.6 (Criterion for a Function to be Constant). A real-valued
function that is continuous on a compact interval [a, b] is constant on it if
and only if its derivative equals zero at every point of the open interval (a, b).

Proof. Only the fact that f ′(x) ≡ 0 on (a, b) implies that f (x1) = f (x2) for
all x1, x2,∈ [a, b] is of interest. But this follows from Lagrange’s formula,
according to which

f (x2)− f (x1) = f ′(ξ) (x2 − x1) = 0

since ξ lies between x1 and x2, that is, ξ ∈ (a, b), and so f ′(ξ) = 0.

From this we can draw the following conclusion (which as we shall see, is
very important for integral calculus): If the derivatives F ′

1(x) and F ′
2(x) of

two functions F1(x) and F2(x) are equal on some interval, that is, F ′
1(x) =

F ′
2(x) on the interval, then the difference F1(x)− F2(x) is constant.

Proposition A.7. Let f be a differentiable real-valued function defined on
a compact interval [a, b]. Then f ′ : [a, b] → R has no discontinuity point of
the first kind.

Proof. Suppose for contradiction that c ∈ [a, b] is a discontinuity point of
the first kind for f ′. Without loss of generality we suppose c ∈ (a, b). Then
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by assumption the limits

lim
x↓c

f ′(x) =: f ′(c+) , lim
x↑c

f ′(x) =: f ′(c−)

exists and are finite. However, note that

f ′(c) = lim
x↓c

f(x)− f(c)

x− c
= lim

x↓c
f ′(ξx) ,

where c < ξx < x, since ξx ↓ c as x ↓ c, we get f ′(c) = f ′(c+). Similarly,
f ′(c) = f ′(c−), and hence f ′ is continuous at c, which is absurd.

Exercise A.1. Let f : [a, b] → R is continuos. If f is differentiable in (a, b)

and the limits
lim
x↓a

f ′(x) =: A

exists and is finite. Then show that f is differentiable at a and f ′(a) = A.

A.1.3. The Cauchy Mean-Value Theorem The following proposition
is a useful generalization of Lagrange’s theorem, and is also based on Rolle’s
theorem.

Theorem A.8 (Cauchy’s Theorem). Let x = x(t) and y = y(t) be functions
that are continuous on a compact interval [a, b] and differentiable on the open
interval (a, b). Then there exists a point ξ ∈ (a, b) such that

x′(ξ)(y(b)− y(a)) = y′(ξ)(x(b)− x(a)) .

If in addition x′(t) 6= 0 for each t ∈ (a, b), then x(a) 6= x(b) and we have

y(b)− y(a)

x(b)− x(a)
=
y′(ξ)

x′(ξ)
. (A.3)

Proof. The function

F (t) = x(t)[y(b)− y(a)]− y(t)[x(b)− x(a)]

satisfies the hypotheses of Rolle’s theorem on the compact interval [a, b].
Therefore there exists a point ξ ∈ (a, b) at which F ′(ξ) = 0, which is equiv-
alent to the equality to be proved.
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To obtain relation (A.3) from it, it remains only to observe that if x′(t) 6=
0 on (a, b), then x(a) 6= x(b), again by Rolle’s theorem.

Clearly, Lagrange’s theorem can be obtained from Cauchy’s by setting
x(t) = t and y(t) = f(t).

Remark A.5. If we regard the pair (x(t), y(t)) as the law of motion of
a particle, then (x′(t), y′(t)) is its velocity vector at time t, and (x(b) −
x(a), y(b)− y(a)) is its displacement vector over the time interval [a, b]. The
theorem then asserts that at some instant of time ξ ∈ [a, b] these two vectors
are collinear. However, this fact, which applies to motion in a plane, is the
same kind of pleasant exception as the mean-velocity theorem in the case
of motion along a line. Indeed, imagine a particle moving at uniform speed
along a helix:

r(t) = (cos t, sin t, t)

Its velocity makes a constant nonzero angle with the vertical, while the
displacement vector can be purely vertical (after one complete turn).

We give some applications of Cauchy’s mean-value theorem.

Theorem A.9 (L’Hôpital’s Rule I). Let f and g be two differentiable real-
valued function on (a, b) such that g′(x) 6= 0 for all x ∈ (a, b). If one of the
following statements hold

(i) limx↓a f(x) = limx↓a g(x) = 0,

(ii) limx↓a g(x) = ∞,

and in addition the limit limx↓a
f ′(x)
g′(x) exists in [−∞,∞], then we have

lim
x↓a

f(x)

g(x)
= lim

x↓a

f ′(x)

g′(x)
.

Proof. If (i) holds, put f(a) = g(a) = 0, then f and g is continuous on
[a, x], for each x ∈ (a, b). By Cauchy’s mean-value theorem, there exists ξx
in (a, x) so that

f(x)

g(x)
=
f(x)− f(a)

g(x)− g(a)
=
f ′(ξx)

g′(ξx)
.
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Thus ξx ↓ a as x ↓ a and hence

lim
x↓a

f(x)

g(x)
= lim

x↓a

f ′(ξx)

g′(ξx)
= lim

x↓a

f ′(x)

g′(x)
,

as desired.

If (ii) holds, put l = limx↓a
f ′(x)
g′(x) . We begin with assuming that l is finite.

For any given ϵ > 0, there exists δ = δϵ > 0 so that for all x ∈ (a, a+ δ),

l − ϵ <
f ′(x)

g′(x)
< l + ϵ .

Thus for every x ∈ (a, a+ δ), by Cauchy’s mean-value theorem, there exists
ξ ∈ (x, a+ δ) ⊂ (a, a+ δ) so that

l − ϵ <
f(x)− f(a+ δ)

g(x)− g(a+ δ)
=
f ′(ξ)

g′(ξ)
< l + ϵ . (A.4)

Observe that since g(x) → ∞ as x ↓ a, we have

lim sup
x↓a

f(x)− f(a+ δ)

g(x)− g(a+ δ)
= lim sup

x↓a

f(x)

g(x)
,

lim inf
x↓a

f(x)− f(a+ δ)

g(x)− g(a+ δ)
= lim inf

x↓a

f(x)

g(x)
.

Thus letting x ↓ a in (A.4) we get

l − ϵ < lim inf
x↓a

f(x)

g(x)
≤ lim sup

x↓a

f(x)

g(x)
< l + ϵ .

Since ϵ is arbitrary, we get

lim inf
x↓a

f(x)

g(x)
= lim sup

x↓a

f(x)

g(x)
= l ,

and the desired result follows.

If l is ∞ or −∞, the theorem follows by the same argument.

Corollary A.10 (L’Hôpital’s Rule II). Let f and g be two differentiable
real-valued function on (a,∞) such that g′(x) 6= 0 for all x ∈ (a,∞). If one
of the following statements hold
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(i) limx→∞ f(x) = limx→∞ g(x) = 0,

(ii) limx→∞ g(x) = ∞,

and in addition the limit limx→∞
f ′(x)
g′(x) exists in [−∞,∞], then we have

lim
x→∞

f(x)

g(x)
= lim

x→∞

f ′(x)

g′(x)
.

Proof. Since t 7→ 1
t is continuous on (0,∞), using change of variable we have

lim
x→∞

f(x)

g(x)
= lim

t↓0

f
(
1
t

)
g
(
1
t

) .
Thus we define F and G by

F (t) = f

(
1

t

)
and G(t) = g

(
1

t

)
for t ∈ (0,

1

a
) .

Then F and G are differentiable on (0, a−1) with

F ′(t) = − 1

t2
f ′
(
1

t

)
and G′(t) = − 1

t2
g′
(
1

t

)
It’s easy to see that the conditions of Theorem A.6 are satisfied, so

lim
x→∞

f(x)

g(x)
= lim

t↓0

F (t)

G(t)
= lim

t↓0

F ′(t)

G′(t)

= lim
t↓0

f ′
(
1
t

)
g′
(
1
t

) = lim
x→∞

f ′(x)

g′(x)
,

as desired.

A.2 Taylor’s Formula

From the amount of differential calculus that has been explained up to this
point one may obtain the correct impression that the more derivatives of
two functions coincide (including the derivative of zeroth order) at a point,
the better these functions approximate each other in a neighborhood of that
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point. We have mostly been interested in approximations of a function in
the neighborhood of a point by a polynomial

Pn(x) = c0 + c1 (x− x0) + · · ·+ cn (x− x0)
n ,

and that will continue to be our main interest. We know that an algebraic
polynomial can be represented as

Pn(x) = Pn (x0) +
P ′
n (x0)

1!
(x− x0) + · · ·+ P

(n)
n (x0)

n!
(x− x0)

n

that is, ck = P
(k)
n (x0)
k! for k = 0, 1, . . . , n. This can easily be verified di-

rectly. Thus, if we are given a function f(x) having derivatives up to order
n inclusive at x0, we can immediately write the polynomial

Tn (f, x0;x) =
n∑

k=0

f (k) (x0)

k!
(x− x0)

k

= f (x0) +
f ′ (x0)

1!
(x− x0) + · · ·+ f (n) (x0)

n!
(x− x0)

n ,

(A.5)

whose derivatives up to order n inclusive at the point x0 are the same as the
corresponding derivatives of f(x) at that point. The algebraic polynomial
given by is the Taylor polynomial of order n of f at x0.

We shall be interested in the value of

f(x)− Tn (f, x0;x) = rn (f, x0;x)

of the discrepancy between the polynomial Pn(x) and the function f(x),

which is often called the remainder, more precisely, the nth remainder or
the nth remainder term in Taylor’s formula:

f(x) =
n∑

k=0

f (k) (x0)

k!
(x− x0)

k + rn (f, x0;x) . (A.6)

The equality (A.6) itself is of course of no interest if we know nothing
more about the function rn (f, x0;x) than its definition.
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Theorem A.11 (The Peano Form of Remainder). Let f be a real-valued
function on an interval I ⊂ R such that its nth derivative f (n)(x0) at x0 ∈ I

exists. Then

rn (f, x0;x) = o(|x− x0|n) as x→ x0 , x ∈ I .

Proof. We shall use the induction. When n = 1, the theorems follows form
the definition of derivative. Suppose now the theorems holds for n − 1.
Observe that

T ′
n (f, x0;x) = Tn−1

(
f ′, x0;x

)
,

then by L’Hospital’s rule and by assumption

lim
x→x0
x∈I

rn(f, x0;x)

(x− x0)n
= lim

x→x0
x∈I

f(x)− Tn(f, x0;x)

(x− x0)n

= lim
x→x0
x∈I

f ′(x)− Tn−1(f
′, x0;x)

n(x− x0)n−1
=

1

n
lim
x→x0
x∈I

rn−1(f
′, x0;x)

(x− x0)n−1
= 0 .

Thus the theorem also holds for n, as desired.

Remark A.6. Taylor’s formula with the Peano form of the remainder, is
obviously a generalization of the definition of differentiability of a function
at a point, to which it reduces when n = 1.

We return once again to the problem of the local representation of a
function f : O → R by a polynomial. We wish to choose the polynomial
Pn (x0;x) = x0 + c1 (x− x0) + · · ·+ cn (x− x0)

n so as to have

f(x) = Pn(x0, x) + o (|x− x0|n) as x→ x0, x ∈ I (A.7)

Clearly Taylor;s polynomial satisfies us if f (n)(x0) exists. In fact, if the
polynomial exists it must be unique.

Proposition A.12. If there exists a polynomial Pn (x0;x) satisfying con-
dition (A.7), that polynomial must be unique.
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Proof. Indeed, from relation (A.7) we obtain the coefficients of the polyno-
mial successively and completely unambiguously

c0 = lim
I∋x→x0

f(x) ;

c1 = lim
I∋x→x0

f(x)− c0
x− x0

;

...

cn = lim
I∋x→x0

f(x)−
[
c0 + · · ·+ cn−1 (x− x0)

n−1
]

(x− x0)
n .

Thus the polynomial is unique.

We shall now use a highly artificial device to obtain information on the
remainder term. A more natural route to this information will come from
the integral calculus.

Theorem A.13 (The Mean-Value Form of the Remainder). If the function
f is continuous on the closed interval with end-points x0 and x along with
its first n derivatives, and it has a derivative of order n + 1 at the interior
points of this interval, then for any function φ that is continuous on this
closed interval and has a nonzero derivative at its interior points, there exists
a point ξ between x0 and x such that

rn (f, x0;x) =
f (n+1)(ξ)

n!φ′(ξ)
(x− ξ)n [φ(x)− φ (x0)] . (A.8)

Remark A.7 (The Largane Form and the Cauchy Form of the Remainder).
A particularly elegant formula results if we set φ(t) = (x − t)n+1 in (A.8),
then we get the so-called the Lagrange form of the remainder:

rn (x0;x) =
f (n+1)(ξ)

(n+ 1)!
(x− x0)

n+1 .

If we setting φ(t) = x − t in (A.8) we obtain the Cauchy’s form of the
remainder:

rn (x0;x) =
f (n+1)(ξ)

n!
(x− ξ)n (x− x0) .
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Taylor’s formula with the Lagrange form or the Cauchy form of the re-
mainder, is obviously a generalization of Lagrange’s mean-value theorem, to
which it reduces when n = 0

Proof. On the closed interval I with endpoints x0 and x we consider the
auxiliary function

F (t) := rn(f, t;x) = f(x)− Tn(f, t;x)

= f(x)−
n∑

k=0

f (k)(t)

k!
(x− t)k , for t ∈ I .

Clearly F (x0) = rn(f, x0;x) and F (x) = rn(f, x;x) = 0, and we see from
the definition of F and the hypotheses of the theorem that F is continuous
on the closed interval I and differentiable at its interior points, with

F ′(t) = −

[
n∑

k=0

f (k+1)(t)

k!
(x− t)k −

n∑
k=1

f (k)(t)

(k − 1)!
(x− t)k−1

]

= −f
(n+1)(t)

n!
(x− t)n .

Applying Cauchy’s theorem to the pair of functions F (t), φ(t) on the closed
interval I, we find a point ξ between x0 and x at which

F (x)− F (x0)

φ(x)− φ (x0)
=
F ′(ξ)

φ′(ξ)
.

Substituting the expression for F ′(ξ) here and observing that

F (x)− F (x0) = −rn (f, x0;x) ,

we obtain the desired equality.

If the function f has derivatives of all orders n ∈ N at a point x0, the
series

∞∑
n=0

f (n) (x0)

n!
(x− x0)

n

is called the Taylor series of f at the point x0.
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It should not be thought that the Taylor series of an infinitely differen-
tiable function converges in some neighborhood of x0. Since for given any
sequence c0, c1, . . . , cn, . . . of real numbers, one can construct (although this
is not simple to do) a function f such that f (n) (x0) = cn, for all n ∈ N0. As
we know, the radius of convergence of the series is given by

R =
1

lim sup
n→∞

∣∣∣f (n)(x0)
n!

∣∣∣ 1n .
Obviously, f(x) =

∑∞
0

f (n)(x0)
n! (x− x0)

n, i.e., Tn(f, x0;x) → f(x) if and
only if rn(f, x0;x) → 0. It should also not be thought that if the Taylor
series converges, it necessarily converges to the function that generated it.
A Taylor series converges to the function that generated it only when the
generating function belongs to the class of so-called analytic functions.

Proposition A.14. Let f be a infinitely differentiable real-valued function
in an open interval I, i.e., f ∈ C∞(I). If there exists a constant M > 0 so
that

|f (n)(x)| ≤M for all x ∈ I, n ∈ N0 ,

then for each x0 ∈ I, the Taylor series of f at x0 converges to f in I, i.e.,

f(x) =
∞∑
n=0

f (n) (x0)

n!
(x− x0)

n for all x ∈ I .

If in addition I is bounded, then the convergence is uniform in x.

Proof. It suffices to show that for each given x0 and x in I, rn(f, x0;x) → 0.
By the Taylor formula with the Lagrange form of the remainder,

|rn(f, x0;x)| =

∣∣∣∣∣f (n+1)(ξ)

(n+ 1)!
(x− x0)

n+1

∣∣∣∣∣ ≤M
|x− x0|n+1

(n+ 1)!
.

Clearly rn(f, x0;x) → 0 as n → ∞. If I is bounded, then |x − x0| ≤ d :=

diam(I) <∞ and hence

|rn(f, x0;x)| ≤M
dn+1

(n+ 1)!
,

so rn(f, x0;x) → 0 uniformly in x as n→ ∞.
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Example A.2 (A Nonanalytic Function). Here is Cauchy’s example of a
nonanalytic function:

f(x) =

{
e−1/x2

, if x 6= 0 ;

0, if x = 0 .

Starting from the definition of the derivative and the fact that for each fixed
k ∈ N0

xke−1/x2 → 0 as x→ 0

it’s easy to verify that f (n)(0) = 0 for n = 0, 1, 2, . . . . Thus, the Taylor series
in this case has all its terms equal to 0 and hence its sum is identically equal
to 0, while f(x) 6= 0 if x 6= 0.

We end this section with the Taylor formula with integral form of the
remainder, which gives a more natural route to the Lagrange form of the
reminder.

Theorem A.15 (Integral Form of the Remainder). If the real-valued func-
tion f has continuous derivatives up to order n + 1 inclusive on the closed
interval with endpoints x0 and x, then

rn(f, x0;x) =
1

n!

∫ x

x0

f (n+1)(t)(x− t)n dt .

Proof. Using the Newton-Leibniz formula and integration by parts, we carry
out the following chain of transformations, in which all differentiations and
substitutions are carried out on the variable t:

f(x) = f(x0) +

∫ x

x0

f ′(t)dt = f(x0)−
∫ x

x0

f ′(t)(x− t)′ dt

= f(x0)− f ′(t)(x− t)
∣∣x
x0

+

∫ x

x0

f ′′(t)(x− t)dt

= f(x0) + f ′(x0)(x− x0) +

∫ x

x0

f ′′(t)(x− t)dt

= f(x0) + f ′(x0)(x− x0)−
1

2

∫ x

x0

f ′′(t)
(
(x− t)2

)′ dt
= f(x0) + f ′(x0)(x− x0)−

1

2
f ′′(t)(x− t)2

∣∣∣∣x
x0

+
1

2

∫ x

x0

f ′′′(t)(x− t)2 dt
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= · · · = Tn(f, x0;x) +
1

n!

∫ x

x0

f (n+1)(t)(x− t)n dt .

Thus rn(f, x0;x) = f(x)− Tn(f, x0;x) is the integral above.

B Differential Calculus from a More General
Point of View

B.1 Multilinear Transformations
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