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0.1 Preliminary

Thoughout this note, we denote by N0 all the non-negetive integers, by N all the
positive integers, and by R+ all the non-negative real numbers, R+ := [0,∞).

A Stochastic Processes

A stochastic process is a mathematical model for the occurrence, at each moment
after the initial time, of a random phenomenon. The randomness is captured by
the introduction of a measurable space (Ω,F), called the sample space. Further,
if P is a probability measure on it, we write “E” the corresponding expectation op-
erator, and “E(· |G)” the corresponding conditional expectation opetator, where
G ⊂ F is a σ-algebra.

For any map X defined on Ω valued in a Polish space, we write X ∈ F if
and only if σ(X) ⊂ F . We introduce some further terms. We write L[X] or PX

for the distribution of X. For G ⊂ F a sub-σ-algebra or Y random element , we
write L[X|G], L[X|Y ] for the regular conditional distribution of X given G, Y ,
respectively.

Throughout this note, let E be a Polish space with Borel algebra B(E).

(E,B(E)) is regarded as the state space. To define a process, we need a in-
dex set I interpretated as time. We are mostly interested in the cases I = N0,
I = [0,∞) (sometimes I = Z, I = R ) and without special statements we always
assume that I is either N0 or R+.

Definition 0.1. A family of random variables X = {Xt}t∈I on (Ω,F ,P) with
values in (E,B(E)) is called a stochastic process.

Remark 0.1. Sometimes families of random variables with more general index
sets are called stochastic processes. We come back to this with the point process.

For a fixed sample point ω ∈ Ω, the function

t 7→ Xt(ω) ; I → E
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is the sample path (realization) of the processX associated with ω. It provides the
mathematical model for a random experiment whose outcome can be observed
continuously in time (e.g., the number of customers in a queue observed and
recorded over a period of time, the trajectory of a molecule subjected to the
random disturbances of its neighbors, the output of a communications channel
operating in noise).

Let us consider two stochastic processes X = (Xt)t∈I and Y = (Yt)t∈I defined
on the same probability space (Ω,F ,P). When they are regarded as functions of
t and ω we would say X and Y were the same if and only if Xt(ω) = Yt(ω) for
all t and all ω. However, in the presence of the probability measure P, we could
weaken this requirement in at least three different ways to obtain three related
concepts of “sameness” between two processes. We list them here.

• X and Y are called indistinguishable if almost all their sample paths agree:

Xt = Yt for all t a.s..

• X and Y is called a modification of each other if, for every t ∈ I, we have
P (Xt = Yt) = 1.

• X and Y have the same finite-dimensional distributions if, for any positive
integer n ≥ 1, and times t1 < t2 < · · · < tn, we have:

L (Xt1 , . . . , Xtn) = L (Yt1 , . . . , Ytn) .

The first property is the strongest; it implies trivially the second one, which
in turn yields the third. Clearly, in the case of discrete-time (I = N0), the second
implies the first. But in the case of continuous-time(I = R+), two processes can
be modifications of one another and yet have completely different sample paths.
Here is a standard example:

Example 0.1. Consider a positive random variable U with a continuous distri-
bution. For all t ≥ 0, put Xt ≡ 0 and let

Yt =

{
0, t 6= U

1, t = U
.
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Y is a modification of X, since for every t ≥ 0 we have

P (Xt = Yt) = P (U 6= t) = 1 .

But on the other hand:

P (Xt = Yt for all t ≥ 0) = P (U 6= t for all t ≥ 0) = 0 .

A positive result in this direction is the following. Let Y = (Yt)t≥0 be a
modification of X = (Xt)t≥0 and suppose that both processes have a.s. right-
continuous sample paths. Then X and Y are indistinguishable.

It does not make sense to ask whether Y is a modification of X, or whether Y
and X are indistinguishable, unless X and Y are defined on the same probability
space and have the same state space. However, if X and Y have the same state
space but are defined on different probability spaces, we can ask whether they
have the same finite-dimensional distributions.

For technical reasons in the theory of Lebesgue integration, probability mea-
sures are defined on σ-fields and random variables are assumed to be measurable
with respect to these σ-fields. Thus, implicit in the statement that a random
process X = {Xt}t≥0 is a collection of

(
Rd,B(Rd)

)
-valued random variables.

However, X is really a function of the pair of variables (t, ω), and so, for techni-
cal reasons, it is often convenient to have some joint measurability properties.

Definition 0.2. A stochastic process X = {Xt}t≥0 is called measurable if, the
mapping

(t, ω) 7→ Xt(ω) : ([0,∞)× Ω,B([0,∞))×F) → (E,B(E))

is measurable.

When X takes values in
(
Rd,B(Rd)

)
, it is an immediate consequence of Fu-

bini’s theorem that the sample paths of such a process are Borel-measurable
functions of t ∈ [0,∞), and provided that the components of X have defined
expectations, then the same is true for the function m(t) = EXt. Moreover, if
X takes values in R and A is a subinterval of [0,∞) such that

∫
A
E |Xt| dt <∞,

3



then ∫
A

|Xt|dt <∞P-a.s. , and
∫
A

EXt dt = E
∫
I

Xt dt .

An E-valued stochastic process X = (Xt)t∈I is called

• real-valued if E = R,

• a process with independent increments if X is real-valued and for all n ∈ N
and all t0, . . . , tn ∈ I with t0 < t1 < . . . < tn, we have that(

Xti −Xti−1

)
i=1,...,n

is independent ,

• a Gaussian process if X is real-valued and for n ∈ N, t1, . . . , tn ∈ I,

(Xt1 , . . . , Xtn) is n-dimensional normally distributed, and

• integrable (respectively square integrable) ifX is real-valued and E |Xt| <∞
(respectively E |Xt|2 <∞) for all t ∈ I.

• stationary if L
[
(Xt+s)t∈I

]
= L

[
(Xt)t∈I

]
for all s ∈ I, and

• a process with stationary increments if X is real-valued and

L [Xs+t −Xt] = L [Xs −X0] for all s, t ∈ I .

A remarkable result show that a Polish space with Borel σ-algebra is a Borel
space, i.e., there exists a Borel set B ∈ B(R) such that (E,B(E)) and (B,B(B))

are isomorphic. Thus Kolmogorov’s extension theorem guarantees the existence
of these stochastic process.

Example 0.2. We give some examples with the properties above.

• The Poisson process with intensity λ and the random walk on Z are pro-
cesses with stationary independent increments.

• If Xt, t ∈ I, are i.i.d. random variables, then (Xt)t∈I is stationary.
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• Let (Xn)n∈Z be real-valued and stationary and let k ∈ N and c0, . . . , ck ∈ R.
Define

Yn :=
k∑

i=0

ciXn−i

Then Y = (Yn)n∈Z is a stationary process. If c0, . . . , ck ≥ 0 and c0 + . . .+

ck = 1, then Y is called the moving average of X (with weights c0, . . . , ck).

B Filtrations

There is a very important, nontechnical reason to include σ-fields in the study
of stochastic processes, and that is to keep track of information. The temporal
feature of a stochastic process suggests a flow of time, in which, at every moment
t ∈ I, we can talk about a past, present, and future and can ask how much an
observer of the process knows about it at present, as compared to how much he
knew at some point in the past or will know at some point in the future. We
equip our sample space (Ω,F) with a filtration:

Definition 0.3. Let F = (Ft)t∈I be a family of σ-algebras with Ft ⊂ F for all
t ∈ I. F is called a filtration if

Fs ⊂ Ft for all s, t ∈ I with s ≤ t .

We set F∞ = σ(∪tFt).

The concept of measurability for a stochastic process, introduced in Definition
0.2 is a rather weak one. The introduction of a filtration {Ft} opens up the
possibility of more interesting and useful concepts.

Definition 0.4. A stochastic process X = (Xt)t∈I is called adapted to the
filtration F if, for each t ∈ I, Xt is Ft-measurable.

If X = {Xt}t∈I is adapted to F = {Ft}t∈I and Y = {Yt}t∈I is a modification
of X, then Y is also adapted to F provided that F0 contains all the P-negligible
sets in F . Note that this requirement is NOT the same as saying that F0 is
complete, since some of the P-negligible sets in F may not be in the completion
of F0.
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Given a stochastic process X, the simplest choice of a filtration is that gener-
ated by the process itself: Define FX = (FX

t )t∈I by letting

FX
t := σ (Xs, s ≤ t, s ∈ I) .

FX is the smallest filtration to which the processX is adapted, called the filtration
generated by X. We interpret A ∈ FX

t to mean that by time t, an observer of
X knows whether or not A has occurred. The next two exercises illustrate this
point.

Example 0.3. LetX = (Xt)t≥0 be a continuous-time process, every sample path
of which is RCLL (i.e., right-continuous on [0,∞) with finite left-hand limits on
(0,∞)). Let s ≥ 0 and

A = {X is continuous on [0, s)} .

Note that
A =

∞⋂
n=1

∞⋃
m=1

⋂
p,q∈[0,s)∩Q
|p−q|<1/m

{
|Xp −Xq| ≤

1

n

}
,

we have A ∈ FX
s .

Example 0.4. Let X = (Xt)t≥0 be a process whose sample paths are RCLL
almost surely. Let s ≥ 0 and

A = {X is continuous on [0, s)} .

In this case, A can fail to be in FX
s , but if F = (Ft)t≥0 is a filtration satisfying

FX
t ⊂ Ft for all t ≥ 0, and Fs is complete under P, then A ∈ Fs.

Note that, we now have

A =

∞⋂
n=1

∞⋃
m=1

⋂
p,q∈[0,s)∩Q
|p−q|<1/m

{
|Xp −Xq| ≤

1

n

}
P-a.s.,

where A = B P a.s. means that 1A = 1B P-a.s., i.e., there exists N ∈ F so that
A∆B ⊂ N and P(N) = 0. Since right-hand site is in FX

s and Fs is complete
under P, we have A ∈ Fs.
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We finally construct an example with A /∈ FX
s . Choose Ω = [0, 2),F =

B([0, 2)), and P(A) = λ(A ∩ [0, 1]) for A ∈ F , where λ is Lebesgue mesure.
Define, for ω ∈ [0, 1], X(t, ω) = 0 for all t ≥ 0; for ω ∈ (1, 2), X(t, ω) = 1{t=ω}

for all t ≥ 0. Let s = 2. Clearly, in this case A = [0, 1]. If A ∈ FX
s , there

exists B ∈ B(R)[0,∞) and sequence (tn)n≥1 so that A = {(Xtn)n≥1 ∈ B}. Pick
ω1 ∈ (1, 2) and ω1 6= tn, we have (X(tn, ω))n≥1 = (0, 0, · · · ) /∈ B. On the other
hand, Pick ω2 ∈ [0, 1], we have (0, 0, · · · ) ∈ B. This is a contradiction!

In the case of continuous-time, there is something else to deal with. Let
F = {Ft}t≥0 be a filtration. We define F−

t := σ (∪s<tFs) to be the σ-field of
events strictly prior to t > 0 and F+

t := ∩s>tFs to be the σ-field of events
immediately after t ≥ 0. We decree F−

0 := F0 and say that the filtration F is
right-(left-)continuous if Ft = F+

t (resp., Ft = F−
t ) holds for every t ≥ 0.

Exercise 0.1. Let X be a process with every sample path LCRL (i.e., leftcontin-
uous on (0,∞) with finite right-hand limits on [0,∞) ), and let A be the event
that X is continuous on [0, s] . Let X be adapted to a right-continuous filtration
{Ft} . Show that A ∈ Fs.

Definition 0.5. The stochastic process X = {Xt}t≥0 is called progressively
measurable with respect to F = {Ft}t≥0 if the mapping

(s, ω) 7→ X(s, ω) : ([0, t]× Ω,B([0, t])×Ft) → (E,B (E))

is measurable, for each t ≥ 0.

The terminology here comes from [1] . Evidently, any progressively measur-
able process is measurable and adapted; the following theorem of [1] provides the
extent to which the converse is true.

Theorem. If the stochastic process X = {Xt}t≥0 is measurable and adapted to
the filtration {Ft} , then it has a progressively measurable modification.

Nearly all processes of interest are either right- or left- continuous, and for
them the proof of a stronger result is easier and will now be given.
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Theorem 0.1. If the stochastic process X = {Xt}t≥0 is adapted to the filtration
{Ft}t≥0 and every sample path is right-continuous or else every sample path is
left-continuous, then X is also progressively measurable with respect to {Ft}.

Proof. We treat the case of right-continuity. With t > 0, n ≥ 1, 1 ≤ k ≤ 2n and
s ∈ [0, t], we define:

X(n)(s, ω) := X
( k
2n
, ω
)

for k − 1

2n
t < s ≤ k

2n
t

as well as X(n)(0, ω) = X(0, ω). The so-constructed map (s, ω) 7→ X(n)(s, ω)

from [0, t]×Ω into E is demonstrably B[0, t]×Ft-measurable. Besides, by right-
continuity we have: lim(n)

n→∞(s, ω) = X(s, ω),∀(s, ω) ∈ [0, t] × Ω. Therefore, the
(limit) map (s, ω) 7→ X(s, ω) is also B[0, t]×Ft -measurable.

Remark 0.2. If the stochastic process X = {Xt}t≥0 is right- or left-continuous,
but not necessarily adapted to {Ft} , then the same argument shows that X is
measurable.

A random time T is an F-measurable random variable, with values in I∪{∞}.
If X = {Xt}t∈I is a stochastic process and T is a random time, we define the
function XT on the event {T <∞} by

XT (ω) := XT (ω)(ω) ,

Clearly, if the process X = {Xt}t≥0 is measurable and the random time T with
values in [0,∞] then XT is a random variable defined on {T < ∞}. We set the
σ-field generated by XT as

{{XT ∈ A} : A ∈ B(R)} ∪ {T = ∞} .

which is the smallest σ-field on Ω so that XT is measurable.

Remark 0.3. Sometiones, X∞ is a well-defined random variable making sense,
then XT can also be defined on Ω, by setting XT (ω) := X∞(ω) on {T = ∞}.

We shall devote our next subsection to a very special and extremely useful
class of random times, called stopping times. These are of fundamental impor-
tance in the study of stochastic processes, since they constitute our most effective
tool in the effort to “tame the continuum of time,” as Chung puts it.
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C Stopping Times

Let us keep in mind the interpretation of the parameter t as time, and of the
σ-field Ft as the accumulated information up to t. Let us also imagine that
we are interested in the occurrence of a certain phenomenon: an earthquake
with intensity above a certain level, a number of customers exceeding the safety
requirements of our facility, and so on. We are thus forced to pay particular
attention to the instant T (ω) at which the phenomenon manifests itself for the
first time. It is quite intuitive then that the event {ω;T (ω) ≤ t}, which occurs if
and only if the phenomenon has appeared prior to (or at) time t, should be part
of the information accumulated by that time.

We can now formulate these heuristic considerations as follows : Let us con-
sider a measurable space (Ω,F) equipped with a filtration F = {Ft}t∈I .

Definition 0.6. A random time T is called a stopping time of the filtration
F, if the event {T ≤ t} ∈ Ft, for every t ∈ I.

Clearly, every random time equal to a nonnegative constant is a stopping
time.

In the case of discrete time, T is a stopping time of F = {Fn}n≥0 of iff
{T = n} ∈ Fn for all n. In the case of continuous time, if T is a stoppping time
of {Ft}t≥0,

{T < t} =
⋃
n≥1

{T ≤ t− 1

n
} ∈ Ft .

for each t > 0, so {T = t} ∈ Ft. However, the converse is NOT ture. Moreover,
if a random time T satisfying that {T < t} ∈ Ft for each t ≥ 0, then

{T ≤ t} =
⋂
n≥1

{T ≤ t+
1

n
} ∈ F+

t .

So such random time T is a stopping time of the {F+
t }. We introduce the

following defition.

Definition 0.7. In the case of continuous time, a random time T is called a
optional time of the filtration F = {Ft}t≥0, if the event {T < t} ∈ Ft, for every
t ≥ 0.

9



By the arguement above, we get:

Theorem 0.2. In the case of continuous time, T is an optional time of the
filtration {Ft}t≥0 if and only if it is a stopping time of the (right-continuous)
filtration

{
F+

t

}
t≥0

. Particularly, every stopping time is optional, and the two
concepts coincide if the filtration is right-continuous.

Example 0.5. Let I = N0 and F = {Fn}n≥0 be a filtration. Let A ∈ B(E)

be measurable. Let X = (Xn)n≥0 be an adapted E-valued stochastic process.
Consider the first time that X hits A :

TA := inf {n ≥ 0 : Xn ∈ A}

It is intuitively clear that τA should be a stopping time since we can determine
by observation up to time n whether {τA ≤ n} occurs. Consider now the random
time of the last visit of X to A:

LA := sup {n ≥ 0 : Xn ∈ A} .

For a fixed time n, on the basis of previous observations, we cannot determine
whether X is already in A for the last time. For this we would have to rely on
“prophecy”. Hence, in general, LA is not a stopping time.

Example 0.6. Consider a continuous-time E-valued stochastic process X =

{Xt}t≥0 with right-continuous paths, which is adapted to a filtration F = {Ft}t≥0.
Consider a subset A ∈ B(E) of the state space of the process, and define the hit-
ting time

TA = inf {t ≥ 0;Xt ∈ A} .

Here we employ the standard convention that the infimum of the empty set is
infinity. We will show that,

(i) if A is closed and every sample paths of the process X are continuous, then
TA is a F-stopping time;

(ii) if A is open, then TA is a F-optional time.
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To show (i), suppose that {ai : i ∈ N} is a dense subset of A (such {ai} exists
since E is Polish space). Note that for t ≥ 0,

{TA ≤ t} = {ω : cl ({Xr(ω) : r ∈ [0, t] ∩Q}) ∩A 6= ∅}

=

∞⋂
n=1

⋃
r∈Q∩[0,t]

⋃
i∈N

{Xr ∈ U (ai, 1/n)} ∈ Ft

where U(x, ϵ) := {y ∈ E : d(x, y) < ϵ}. To show (ii), for t > 0, note that every
sample path of X is right-continuous and A is open, we have

{TA < t} =
⋃

r∈[0,t)∩Q

{Xr ∈ A} ∈ Ft .

If in addition on (ii) X has continuous sample paths, we still can not deduce that
TA is a stoppting time of F (of course we assume that F is not right-continuous).
We give a counterexample.

Suppose E = Rd and A is a bounded open set. Let B be a d-dimensional
Brownian motion starting outside of A. We may fix a path γ : [0, t] → Rd with
γ[0, t) ∩ A = ∅ and γ(t) ∈ ∂A. Then the σ-algebra FB

t contains no nontrivial
subset of {B(s) = γ(s) for all 0 ≤ s ≤ t}, i.e. no subset other than the empty
set and the set itself. If we had {TA ≤ t} ∈ FB

t , the set

{B(s) = γ(s) for all 0 ≤ s ≤ t, T = t}

would be in FB
t and (as indicated in Figure 1) a nontrivial subset of this set,

which is a contradiction.

Remark 0.4. Because the first hitting times of open or closed sets play an impor-
tant role, the right-continuous property of the filtration is needed to guarantee
that the first hitting times are stopping times.

Let us establish some simple properties of stopping times and optional times.

Lemma 0.3. Let T and S and be two stopping times of F = {Ft}t∈I . Then:

(i) S ∨ T and S ∧ T are F-stopping times.

11



42 Brownian motion as a strong Markov process

γ

γ(t)

A

Fig. 2.3. At time t the path γ hits the boundary of G, see the arrow. The two possible dotted
continuations indicate that the path may or may not satisfy T = t.

Because the first hitting times of open or closed sets play an important rôle, the last item
in Remark 2.14 shows that when dealing with Brownian motion it is often preferable to
work with stopping times with respect to the richer filtration (F+(t) : t � 0) instead
of (F0(t) : t � 0). Therefore in the case of Brownian motion we make the convention
that, unless stated otherwise, notions of stopping time, etc. always refer to the filtra-
tion (F+(t) : t � 0). As this filtration is larger, our choice produces more stopping times.

The crucial property which distinguishes (F+(t) : t � 0) from (F0(t) : t � 0) is right-
continuity, which means that ⋂

ε>0

F+(t + ε) = F+(t) .

To see this note that⋂
ε>0

F+(t + ε) =
∞⋂

n=1

∞⋂
k=1

F0(t + 1/n + 1/k) = F+(t) .

The next result indicates the technical advantage of right-continuous filtrations.

Proposition 2.15 Suppose a random variable T with values in [0,∞] satisfies {T < t} ∈
F(t), for every t � 0, and (F(t) : t � 0) is right-continuous, then T is a stopping time
with respect to (F(t) : t � 0).

Proof. Suppose that T satisfies the conditions of the theorem. Then

{T � t} =
∞⋂

k=1

{T < t + 1/k} ∈
∞⋂

n=1

F(t + 1/n) = F(t) ,

using the right-continuity of (F(t) : t � 0) in the last step.

We define, for every stopping time T , the σ-algebra

F+(T ) = {A ∈ A : A ∩ {T � t} ∈ F+(t) for all t � 0} .

This means that the part of A that lies in {T � t} should be measurable with respect

Figure 1: At time t the path γ hits the boundary of A, see the arrow. The
two possible dotted continuations indicate that the path may or may not satisfy
TA = t.

(ii) S + T is also a F-stopping time.

(iii) For s ∈ I, T + s is a F-stopping time. However, in general, T − s is not.

Before we present the (simple) formal proof, we state that in particular (i) and
(iii) are properties we would expect of stopping times. With (i), the interpretation
is clear. For (iii), note that T − s peeks into the future by s time units (in fact,
{T − s ≤ t} ∈ Ft+s, while T + s looks back s time units. For stopping times,
however, only retrospection is allowed.

Proof. (i). For t ∈ I, we have {S ∨ T ≤ t} = {S ≤ t} ∩ {T ≤ t} ∈ Ft and
{S ∧ T ≤ t} = {S ≤ t} ∪ {T ≤ t} ∈ Ft.

(ii). Let t ∈ I. By (i), T ∧ t and S ∧ t are stopping times for any t ∈ I. Hence
T ′ := (T ∧ t) + 1{T>t} and S′ := (S ∧ t) + 1{S>t} are Ft-measurable, and thus
T ′ + S′. We conclude {T + S ≤ t} = {T ′ + S′ ≤ t} ∈ Ft.

(iii). For T + s, this is a consequence of (ii) (with the stopping time S ≡ s).
For T − s, since T is a stopping time, we have {T − s ≤ t} = {T ≤ t+ s} ∈ Ft+s.

However, in general, Ft+s is a strict superset of Ft; hence T − s is not a stopping
time.

12



Lemma 0.4. Let {Tn}n≥1 be a sequence of stopping times of F = {Fn}n≥0 then
the random times

sup
n≥1

Tn, inf
n≥1

Tn, lim sup
n→∞

Tn, lim inf
n→∞

Tn

are all stopping times of F.

Proof. Not that for each k ≥ 0,{
sup
n≥1

Tn ≤ k

}
=

∞⋂
n=1

{Tn ≤ k} ,

{
inf
n≥1

Tn ≤ k

}
=

∞⋃
n=1

{Tn ≤ k} ;

and
lim sup
n→∞

Tn = inf
n≥1

sup
m≥n

Tm and lim inf
n→∞

Tn = sup
n≥1

inf
m≥n

Tm ,

the desired result follows.

Lemma 0.5. Let {Tn}n≥1 be a sequence of optional times of F = {Ft}t≥0 then
the random times

sup
n≥1

Tn, inf
n≥1

Tn, lim
n→∞

Tn, lim
n→∞

Tn

are all optional. Furthermore, if the Tn’s are stopping times, then so is supn Tn.

Proof. Note Theorem 0.2 and the identities{
sup
n≥1

Tn ≤ t

}
=

∞⋂
n=1

{Tn ≤ t} and
{

inf
n≥1

Tn < t

}
=

∞⋃
n=1

{Tn < t} .

and the proof of Lemma 0.4, the desired result follows.

Suppose we have a filtration {Ft}t inI , then how can we measure the informa-
tion accumulated up to a stopping time T? In order to broach this question, let
us suppose that an event A is part of this information, i.e., that the occurrence
or nonoccurrence of A has been decided by time T . Now if by time t one observes
the value of T , which can happen only if T ≤ t, then one must also be able to

13



tell whether A has occurred. In other words, A∩{T ≤ t} and Ac ∩{T ≤ t} must
both be Ft-measurable, and this must be the case for any t ≥ 0. since

Ac ∩ {T ≤ t} = {T ≤ t} ∩ (A ∩ {T ≤ t})c

it is enough to check only that A ∩ {T ≤ t} ∈ Ft for all t ∈ I.

Definition 0.8. Let T be a stopping time of the filtration {Ft} . The σ-field FT

of events determined prior to the stopping time T consists of those events A ∈ F
for which A ∩ {T ≤ t} ∈ Ft for every t ≥ 0.

It’s not hard to verify that FT is actually a σ -field and T is FT -measurable.
Besides, if T ≡ t for some constant t ∈ I, then FT = Ft.

Example 0.7. Let I = N0 and let X be an adapted real-valued stochastic
process. Let a ∈ R and let

T = inf {n ≥ 0 : Xn ≥ a}

be the stopping time of first entrance in [a,∞). Consider the events

A = {sup {Xn : n ∈ N0} > a− 5} ,

B = {sup {Xn : n ∈ N0} > a+ 5} .

Clearly, for all n ∈ N0, {T ≤ n} ⊂ A, so

A ∩ {T ≤ n} = {T ≤ n} ∈ Fn

Thus A ∈ FT . However, in general, B /∈ FT since up to time T, we cannot decide
whether X will ever exceed a+ 5.

Lemma 0.6. If S and T are stopping times of F = (Ft)t∈I . Then the following
propositions hold.

(i) If S ≤ T, then FS ⊂ FT .

(ii) FS∧T = FS ∩FT , and each of the events {T < S}, {S < T}, {T ≤ S}, {S ≤
T}, {T = S} in FS∧T .

14



(iii) If A ∈ FS∨T then A ∩ {S ≤ T} ∈ FT .

(iv) FS∨T = σ (FS ,FT ).

Proof. (i). Take any A ∈ FS . For each and t ∈ I, since S ≤ T, we thus get

A ∩ {T ≤ t} = (A ∩ {S ≤ t}) ∩ {T ≤ t} ∈ Ft ,

hence A ∈ FT .

(ii). By (i), FS∧T ⊂ FS ∩ FT . On the other hand, take any A ∈ FS ∩ FT ,
then

A ∩ {S ∧ T ≤ t} = (A ∩ {S ≤ t}) ∪ (A ∩ {T ≤ t}) ∈ Ft ,

hence A ∈ FS∧T and then FS∧T = FS ∩ FT . It suffices to show that {S < T} ∈
FS ∩FT , then by symmetry, {T < S} ∈ FS∧T , so the same for {S ≤ T} = {T <

S}c. We firstly show that {S < T} ∈ FT . When I = N0, for any n ≥ 0,

{S < T} ∩ {T ≤ n} =

n⋃
m=0

{S < m} ∩ {T = m} ∈ Fn ;

when I = R+, for any t ≥ 0,

{S < T} ∩ {T ≤ t} =
⋃

r∈Q+,r≤t

{S < r} ∩ {r < T ≤ t} ∈ Ft .

To show {S < T} ∈ FS , note that when I = N0, for anr n ≥ 0,

{S < T} ∩ {S ≤ n} =

n⋃
m=0

{T > m} ∩ {S = m} ∈ Fn ;

when I = R+ and t ≥ 0,

{S < T} ∩ {S ≤ t} =
⋃

r∈{t}∪(Q∩[0,t])

{S ≤ r} ∩ {T > r} ∈ Ft ,

so the desired result follows.

(iii). For any t ∈ I, since {S ≤ T} ∈ FS∧T ⊂ FT ,

A ∩ {S ≤ T} ∩ {T ≤ t}

= (A ∩ {S ∨ T ≤ t}) ∩ ({S ≤ T} ∩ {T ≤ t}) ∈ Ft .

15



(iv). Evidently, σ (FS ,FT ) ⊂ FS∨T . On the other hand, it follows from (iii)
that

A = (A ∩ {S ≤ T}) ∪ (A ∩ {T ≤ S}) ∈ σ (FS ,FT ) .

Exercise 0.2. Let T, S be stopping times and Z an integrable random variable.
We have (i) E [Z|FT ] = E [Z|FS∧T ], P -a.s. on {T ≤ S} (ii) E [E (Z|FT ) |FS ] =

E [Z|FS∧T ], P-a.s..

Now we can start to appreciate the usefulness of the concept of stopping time
in the study of stochastic processes.

Theorem 0.7. In the case of discrete-time, let X = (Xn)n≥0 adapted to F =

(Fn)n≥0 and let T < ∞ be a stopping time of F. Then XT is measurable with
respect to FT .

Proof. Let A be measurable and n ≥ 0. Hence for allm ≤ n. {T = m}∩X−1
m (A) ∈

Fm ⊂ Fn Thus

X−1
T (A) ∩ {T ≤ m} =

n⋃
m=0

(
{T = m} ∩X−1

m (A)
)
∈ Fn .

Exercise 0.3. Let T , S are stopping times of {Fn}n≥0. Assume T <∞, then

XT 1{T≤S} ∈ FS .

In the case of continuous time, for fixed ω, in general, the sample path

[0,∞) → E ; t 7→ Xt(ω)

can not be measurable, hence neither is the composition XT always measurable.
Here one needs assumptions on the regularity of the paths t 7→ Xt(ω); for example,
right continuity.

Theorem 0.8. Let X = {Xt}t≥0 be a progressively measurable process adapted
to F = {Ft}t≥0, and let T be a stopping time of F. Then the random variable XT ,
defined on the set {T < ∞} ∈ FT , is FT -measurable, and the “stopped process”
XT = {XT∧t}t≥0 is progressively measurable with respect to F.
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Proof. For the first claim, one has to show that for any A ∈ B (E) and t ≥ 0, the
event {XT ∈ A} ∩ {T ≤ t} ∈ Ft; but this event can also be written in the form
{XT∧t ∈ A}∩{T ≤ t}, and so it is sufficient to prove the progressive measurability
of the stopped process.

To this end, one observes that the mapping

(s, ω) 7→ (T (ω) ∧ s, ω)

of [0, t] × Ω into itself is B([0, t]) × Ft -measurable. Besides, by the assumption
of progressive measurability, the mapping

(s, ω) 7→ X(s, ω) : ([0, t]× Ω,B([0, t])×Ft) → (E,B (E))

is measurable, and therefore the same is true for the composite mapping

(s, ω) 7→ X(T (ω) ∧ s, ω) : ([0, t]× Ω,B([0, t])×Ft) → (E,B (E)) .

We now complete the proof.

In the case of continuous time, let T be a optional time of the filtration
F = {Ft}t≥0. Then, we can define a σ-field as

{A ∈ F : A ∩ {T < t} ∈ Ft for all t ≥ 0}

On the other hand, T is a stopping time for the right-continuous filtration
{F+

t }t≥0, so we have the σ-field F+
T of events determined immediately after the

optional time T , given by

F+
T = {A ∈ F : A ∩ {T ≤ t} ∈ F+

t for all t ≥ 0} ,

It’s easy to check that the two σ-fields coinside. If T is a stopping time, so that
both FT ,F+

T are defined, and FT ⊂ F+
T .

Lemma 0.9. Given an optional time T of the filtration F = {Ft}t≥0, consider
the sequence {Tn}∞n=1 of random times given by

Tn =

∞∑
k=1

k

2n
1{ k−1

2n ≤T< k
2n } +∞ 1{T=∞} for n ≥ 1 .

Then for each n, Tn is a positive stopping time of F, and Tn ↓ T .

17



Proof. Evidently, Tn ↓ T . We next show that Tn is a stoppting time. To see this,
note that for t ≥ 0,

{Tn ≤ t} =
⋃

1≤k≤2nt

{Tn =
k

2n
} =

⋃
1≤k≤2nt

{k − 1

2n
≤ T <

k

2n
} ∈ Ft .

So Tn is a stopping time of F.

Lemma 0.10. {Tn}∞n=1 is a sequence of optional times and T = infn≥1 Tn, then

F+
T =

∞⋂
n=1

F+
Tn
.

Besides, if each Tn is a positive stopping time and T < Tn on {T < ∞} (as in
Lemma 0.9), then we have

F+
T =

∞⋂
n=1

FTn .

Proof. Since T ≤ Tn we have F+
T ⊂ F+

Tn
. Thus F+

T ⊂ ∩nF+
Tn

. On the other
hand, if A ∈ F+

Tn
for all n, then for t ≥ 0,

A ∩ {T < t} =
⋃
n≥1

(A ∩ {Tn < t}) ∈ Ft .

Thus A ∈ F+
T . So the first equation holds. To prove the second one, it suffices

to show F+
T ⊂ FTn

for each n. Then from F+
T ⊂ ∩nFTn

⊂ ∩nF+
Tn

we get the
desired result. To this ned, for any A ∈ F+

T and t ≥ 0, we have

A ∩ {Tn ≤ t} = A ∩ {T < t} ∩ {Tn ≤ t} ∈ Ft

Thus A ∈ FTn
.

We close this section with a statement about the set of jumps for a stochastic
process whose sample paths do not admit discontinuities of the second kind.

Definition 0.9. In the case of continuous time, a filtration {Ft}t≥0 is said to
satisfy the usual conditions if it is right-continuous and F0 contains all the
P-negligible events in F .
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Theorem. If the process X = {Xt}t≥0 has RCLL paths and is adapted to the fil-
tration F = {Ft} which satisfies the usual conditions, then there exists a sequence
{Tn}n≥1 of stopping times of F which exhausts the jumps of X, i.e.

{(t, ω) ∈ (0,∞)× Ω : X(t, ω) 6= X(t−, ω)} ⊂
∞⋃

n=1

{(t, ω) ∈ [0,∞)× Ω : Tn(ω) = t}
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Chapter 1

Discrete-Time Martingales

The study of the dependence between random variables arises in various ways in
probability theory. In the theory of Gaussian processes, the basic indicator of
dependence is the covariance function, and the inferences made in this theory are
determined by the properties of that function. In the theory of Markov chains,
the basic dependence is supplied by the transition function, which completely
determines the development of the random variables involved in Markov depen-
dence. In this chapter we single out a rather wide class of sequences of random
variables (martingales and their generalizations) for which dependence can be
studied by methods based on the properties of conditional expectations.

1.1 Definitions and Elementary Properties

Although in this chapter we only foucus on discrete-time martingales, we shall
introduce martingales indexed by an arbitary index set I ⊂ R. Let (Ω,F ,P) be
a probability space with a filtration F = (Ft)t∈I .

Definition 1.1. Let X = (Xt)t∈I be a real-valued, integrable stochastic process
adapted to F. We say {X,F,P} is a

• martingale, if E [Xt|Fs] = Xs for all s, t ∈ I with t > s ;
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• submartingale , if E [Xt|Fs] ≥ Xs for all s, t ∈ I with t > s ;

• supermartingale, if E [Xt|Fs] ≤ Xs for all s, t ∈ I with t > s .

Remark 1.1. Most of the time, the probability P is clear, so we shall say X is a
(sub-,super-) martingale with respect to F or X is a F-(sub-,super-) martingale
for short. We also write (X,F) or (Xt,Ft)t∈I is a (sub-,super-) martingale. If
we do not explicitly mention the filtration F, we tacitly assume that FX = FX

is generated by X, i.e., Ft = σ (Xs, s ≤ t) for all t.

Remark 1.2. If I = N, N0 or Z, then it is enough to consider at each instant s
only t = s+ 1. In fact, by the tower property of the conditional expectation, we
get

E [Xs+2|Fs] = E [E (Xs+2|Fs+1) |Fs] .

Thus, if the defining equality (or inequality) holds for any time step of size one,
by induction it holds for all times.

Remark 1.3. Clearly, for a martingale, the map t 7→ EXt is constant, for sub-
martingales it is monotone increasing and for supermartingales it is monotone
decreasing. The name comes from the fact that if f is superharmonic (on Rd),
i.e., f has continuous derivatives of order ≤ 2 and ∆f ≤ 0, then

f(x) ≥ 1

|B(x, r)|

∫
B(x,r)

f(y)dy

where B(x, r) = {y : |x − y| ≤ r} is the ball of radius r, and |B(x, r)| is the
volume of the ball.

Remark 1.4. Let F and F′ be filtrations with Ft ⊂ F ′
t for all t, and let X be an

F′ − (sub−, super- ) martingale that is adapted to F. Then X is also a (sub-,
super-) martingale with respect to the smaller filtration F. Indeed, for s < t and
for the case of a submartingale,

E [Xt|Fs] = E [E [Xt|F ′
s] |Fs] ≥ E [Xs|Fs] = Xs

In particular, if (X,F) is a (sub-, super-) martingale, then (X,FX) must be a
(sub-, super-) martingale.
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A Examples

We now give some examples, however we will encounter many other examples in
this note. We begin by a trivial example.

Example 1.1. Let ξ be an integrable random variable. Define X = (Xt)t∈I by

Xt := ξ , for all t ∈ I .

Then given any filtration F = (Ft)t∈I satisfying σ(ξ) ⊂ Ft for each t, X is a
martingale with respect to F.

Example 1.2 (Levy Martingale). Let ξ in L1 and let F = (Ft)t∈I be a filtration.
Define M = (Mt)t∈I by

Mt := E(ξ|Ft) for all t ∈ I .

Then (Mt,Ft)t∈I is a martingale as a consequence of the tower property of con-
ditional expectation. We call it a Levy martingale. The key property of M is
that it is uniformly integrable.

To see this, without loss of generality, suppose that ξ ≥ 0. (If not, consider
|ξ| ≥ 0 and note that |Mt| ≤ E(|ξ||Ft) =: M̃t for any t.) Then for any t ∈ I and
λ > 0,

E |Mt|1{|Mt|>λ} = EMt1{Mt>λ} = E ξ1{Mt>λ}

and by Markov inequality,

P(Mt > λ) ≤ EMt

λ
=

Eξ
λ
.

Hence
sup
t∈I

E |Mt|1{|Mt|>λ} = sup
t∈I

E ξ1{Mt>λ} → 0 as λ→ ∞

follows from the absolute continuity of the integral.

Later, we will see that, in Theorem 1.28, surprisingly, any uniformly integrable
martingale is Levy’s martingale, in discrete-time case.
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Example 1.3. Let {ξn}n∈N be independent r.v.’s on (Ω,F ,P) with E ξn = 1 for
each n. Let {Fn}n∈N is the filtration generated by {ξn}, and set F0 = {∅,Ω}.
Then M0 = 1 and

Mn =
∏
m≤n

ξm , for n ∈ N

defines a martingale {Mn,Fn}n≥0. To prove this, note that

E (Mn+1|Fn) =MnE (ξn+1|Fn) =Mn for n ∈ N0 .

We will describe three examples related to random walk. In the next threes
examples, we always suppose that ξ1, ξ2, . . . are i.i.d. r.v.’s with mean µ. Let
Sn = ξ1+· · ·+ξn and Fn = σ (ξ1, . . . , ξn) for n ≥ 1. Take S0 = 0 and F0 = {∅,Ω},
denote F = {Fn}n∈N0 .

Example 1.4 (Linear martingale). If µ = 0 then {Sn,Fn}n∈N0 is a martingale.
To prove this, we observe that Sn ∈ Fn, E |Sn| <∞, and ξn+1 is independent

of Fn, so

E (Sn+1|Fn) = E (Sn|Fn) + E (ξn+1|Fn) = Sn + µ = Sn

If µ ≤ 0 then the computation just completed shows E (Sn+1|Fn) ≤ Sn, i.e.,
{Sn,Fn} is a supermartingale. In this case, Sn corresponds to betting on an
unfavorable game. If µ ≥ 0 then {Sn,Fn} is a submartingale. In this case, Sn

corresponds to betting on a favorable game.

Applying the first result to ξ′i = ξi − µ we see that {Sn − nµ,Fn} is a mar-
tingale.

Example 1.5 (Quadratic Martingale). Suppose now that µ = 0 and σ2 =

var (ξ1) < ∞. In this case {S2
n − nσ2,Fn}n≥0 is a martingale. To show this,

note that ξn+1 is independent of Fn,

E
[
S2
n+1 − (n+ 1)σ2|Fn

]
= S2

n + 2SnE (ξn+1|Fn) + E
(
ξ2n+1|Fn

)
− (n+ 1)σ2

= S2
n + 0 + σ2 − (n+ 1)σ2 = S2

n − nσ2 .
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Example 1.6 (Exponential Martingale). Let ϕ(θ) = E eθξi and Yi = eθξi/ϕ(θ)

has mean 1. Then let M0 = 1 and

Mn =

n∏
i=1

Yi =
eθSn

ϕ(θ)n
, for n ∈ N .

Then {Mn,Fn}n≥0 is a martingale by Example 1.3.

B Elementary Properties

We turn now to deriving properties of martingales. The following proposittion is
elementary, so we omit the proof.

Proposition 1.1. Let X = (Xt)t∈I and Y = (Yt)t∈I be real-valued processes
adapted to the filtraton F = (Ft)t∈I .

(i) X is a F-supermartingale if and only if (−X) is a F-submartingale.

(ii) Let X and Y be F-martingales and let a, b ∈ R. Then (aX + bY ) is a
F-martingale.

(iii) Let X and Y be F-supermartingales and a, b ≥ 0. Then (aX + bY ) is a
F-supermartingale.

(iv) Let X and Y be F-supermartingales. Then X ∧ Y := (Xt ∧ Yt)t∈I is a
F-supermartingale.

Remark 1.5. It follows from (i) that many statements about supermartingales
hold mutatis mutandis for submartingales . For example, claim (iii) and (iv)
holds for submartingales : if X and Y are F-submartingales, (aX + bY ) is a
submartingale, for a, b ≥ 0 nad X ∨ Y := (Xt ∨ Yt)t∈I is a F-submartingale.

We often do not give the statements both for submartingales and for super-
martingales. Instead, we choose representatively one case. Note, however, that
those statements that we make explicitly about martingales usually cannot be
adapted easily to sub- or super- martingales (such as (ii) in the preceding propo-
sition).
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Theorem 1.2. Let (Xt,Ft)t∈I be a martingale and let φ be a convex function
on R. If

E [|φ (Xt) |] <∞ for all t ∈ I ,

then (φ (Xt) ,Ft)t∈I is a submartingale.

Proof. By assumption, (φ (Xt))t∈I is integrable. Jensen’s inequality yeilds that,
for any t, s ∈ I with t > s,

E [φ (Xt) |Fs] ≥ φ (E [Xt|Fs]) = φ (Xs) .

So the desired result holds.

Corollary 1.3. Let (Xt,Ft)t∈I be a martingale. Suppose that p ≥ 1 and
E |Xt|p <∞ for all t ∈ I, then (|Xt|p ,Ft)t∈I is a submartingale.

Corollary 1.4. Let (Xt,Ft)t∈I be a submartingale and let φ be a increasing
convex function on R. If E|φ (Xt) | < ∞ for all t, then (φ (Xt) ,Ft)t∈I is a
submartingale.

Exercise 1.1. If (Xn,Fn)n≥0 is a supermartingale and E [XT ] ≥ E [X0] for some
T ∈ N then (Xn,Fn, 0 ≤ n ≤ T ) is a martingale. If there exists a sequence
TN → ∞ with E [XTN

] ≥ E [X0] , then (Xn,Fn)n≥0 is a martingale.

C Discrete Stochastic Integral

From now on, we will foucus on the discrete-time case.

Definition 1.2. A discrete-time process H = (Hn)n∈N is called predictable (or
previsible) with respect to the filtration F = (Fn)n∈N0 if

Hn ∈ Fn−1 for every n ∈ N .

We say that (Hn,Fn−1)n≥1 is predictable for short. In other words, the value
of Hn may be predicted (with certainty) from the information available at time
n− 1.
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Example 1.7. Let ξ1, ξ2, . . . be i.i.d. random variables, with

P(ξ1 = 1) = P(ξ1 = −1) =
1

2
, for all i ∈ N .

Let ξ = (ξi)i∈N and let F = Fξ be the filtration generated by ξ.

We interpret ξi as the result of a bet that gives a gain or loss of one euro for
every euro we put at stake. Just before each gamble we decide how much money
we bet. LetHn be the number of euros to bet in the n th gamble. Clearly, Hn may
only depend on the results of the gambles that happened earlier, but not on ξm for
any m ≥ n. To put it differently, there must be a function ϕn : {−1, 1}n−1 → R+

such that
Hn = ϕn (ξ1, . . . , ξn−1) .

Hence H is predictable. On the other hand, any predictable H has the form
Hn = ϕn (ξ1, . . . , ξn−1) , n ∈ N0 for certain functions ϕn : {−1, 1}n−1 → R+.

Hence any predictable H is an admissible gambling strategy.

In this subsection, we will be thinking ofHn as the amount of money a gambler
will bet at time n. This can be based on the outcomes at times 1, . . . , n−1 but
not on the outcome at time n.

Once we start thinking of Hn as a gambling system, it is natural to ask how
much money we would make if we used it. Let X = (Xn)n∈N0

be a (possibly
unfair) game where Xn is the net amount of money you would have won at time
n if you had bet one dollar each time. If you bet according to a gambling strategy
H then your winnings at time n would be

n∑
k=1

Hk (Xk −Xk−1) ,

since if at time k you have wagered $3 the change in your fortune would be 3

time that of a person who wagered $1. Alternatively you can think of Xm is the
value of a stock and Hk the number of shares you hold from time k − 1 to time
k.

Definition 1.3. Let {Xn,Fn}n≥0 be an real-valued adapted process, and let
{Hn,Fn−1}n≥0 be a real-valued predictable process. The discrete stochastic
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integral of H with respect to X is the stochastic process H ·X = {H ·Xn}n≥0

defined by (H ·X)0 = 0 and

(H ·X)n :=

n∑
k=1

Hk∆Xk for n ∈ N .

where ∆Xk := Xk −Xk−1 for all k ∈ N. In addition, if X is a martingale, H ·X
is also called the martingale transform of X.

Remark 1.6. An integrabe adapted process ξ = (ξn)n∈N0
is called a martingale

difference sequence with respect to the filtration F = (Fn)n∈N0
, if for each n ≥ 1,

E (ξn|Fn−1) = 0 , a.s..

We also say that (ξn,Fn)n≥1 is a martingale difference sequence. The connection
between discrete-time martingales and martingale difference sequences is clear: If
(Xn,Fn)n≥0 is a martingale, then (ξn,Fn)n≥0 given by ξ0 = X0, ξn = ∆Xn, n ≥
1 is a martingale difference. In turn, if (ξn,Fn) is a martingale difference, then
(Xn,Fn)n≥0 with Xn = ξ0 + · · ·+ ξn, n ≥ 0 is a martingale.

Example 1.8 (Martingale betting strategy). Let ξ1, ξ2, . . . be independent ran-
dom variables with

P (ξj = 1) = P (ξj = −1) =
1

2
.

Let F0 = {∅,Ω} and let Fn = σ (ξ1, . . . , ξn) for n ≥ 1. We will refer to such
random variables as “coin-tossing” random variables where 1 corresponds to heads
and −1 corresponds to tails. Let M0 = 0, and Mn = ξ1 + · · ·+ ξn for n ∈ N. In
other words, (Mn)n≥0 is a simple random walk. We have seen that (Mn,Fn)n≥0

is a martingale in Example 1.4. We will consider the following betting strategy.

We start by betting $1. If we win, we quit; otherwise, we bet $2 on the next
game. If we win the second game, we quit; otherwise we double our bet to $4

and play. Each time we lose, we double our bet. At the time that we win, we
will be ahead $1. With probability one, we will eventually win the game, so this
strategy is a way to beat a fair game. The winnings in this game can be written
as

(H ·M)n =

n∑
j=1

Hj∆Mj =

n∑
j=1

Hjξj
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where the bet H1 = 1 and for j > 1

Hj = 2j−11{ξ1=···=ξj=−1} .

This is an example of a discrete stochastic integral as in the previous example.
By noting that (H ·M)n = 1, unless ξ1 = ξ2 = · · · = ξn = −1 in which case

(H ·M)n = −1− 21 − 22 − · · · − 2n−1 = − (2n − 1) .

This last event happens with probability (1/2)n, and hence

E [(H ·M)n] = 1 ·
(
1− 2−n

)
− (2n − 1) · 2−n = 0 , for each n ∈ N .

However, we will eventually win which means that with probability one

(H ·M)∞ = lim
n→∞

(H ·M)n = 1

and
1 = E [(H ·M)∞] > E [(H ·M)n] = 0 .

This show that, we will beat the game if we have an infinite amount of time.
However, in a finite amount of time, we can’t beat it (since E(H ·M)n = 0 for
all n). Infact, ((H ·M)n,Fn) is a martingale, i.e., a fair game.

The following theorem says, in particular, that we cannot find any locally
bounded gambling strategy that transforms a martingale (or, if we are bound to
nonnegative gambling strategies, as we are in real life, a supermartingale) into a
submartingale. Quite the contrary is suggested by the many invitations to play
all kinds of “sure winning systems”in lotteries.

Theorem 1.5 (Stability Theorem). Let X = (Xn)n≥0 be an real-valued process
adapted to the filtration F = (Fn)n≥0 with E |X0| <∞.

(i) X is a F-martingale if and only if for any locally bounded 1F-predictable
process H, H ·X is a F-martingale.

(ii) X is a F-sub-(super-)martingale if and only if for any non-negative locally
bounded F-predictable process H, H ·X is a F-sub-(super-)martingale.

1it means that for each n, Hn is bounded.
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Proof. We only give the proof of (i), which is similar to the proof of (ii).

Suppose X is a F-martingale. Clearly, H · X is adapted to F. Since H is
locally bounded, H ·X is integrable. Note that for n ∈ N0,

E [(H ·X)n+1|Fn] = (H ·X)n + E [Hn+1 (Xn+1 −Xn) |Fn]

= (H ·X)n +Hn+1E (Xn+1 −Xn|Fn) = (H ·X)n .

Thus H ·X is a F-martingale.

On the other hand, fix an m ∈ N, and let Hn = 1{n=m} for all n ∈ N. Note
that (H · X)m = (Xm − Xm−1), hence Xm − Xm−1 is integrable. Since m is
arbitary and X0 is integrable, X is integrable. Obeserve that (H ·X)m = 0

E [(H ·X)m|Fm−1] = E (Xm|Fm−1)−Xm−1 = (H ·X)m−1 = 0 ,

so E (Xm|Fm−1) = Xm−1 for all m ∈ N. Hence X is a F-martingale.

Remark 1.7. Although Theorem 1.5 implies that we cannot make money with
gambling systems, we can prove many theorems with them.

Recall that a random variable τ taking values in N0 ∪ {∞}, is said to be a
stopping time if

{τ = n} ∈ Fn for all n ∈ N0 .

i.e., the decision to stop at time n must be measurable with respect to the infor-
mation known at that time.

We will now consider two very special gambling system: bet $1 at each time
n ≤ τ then stop playing, or conversely, enter the game until time n > τ then bet
$1 at each time. Let

Hn = 1{n≤τ} for all n ∈ N .

Clearly, {Hn,Fn−1} and {1−Hn,Fn−1} both are predictable, and for each n ∈ N,

(H ·X)n =

n∑
k=1

1{k≤τ}∆Xk = Xτ∧n −X0 ,

((1−H) ·X)n =

n∑
k=1

1{k>τ}∆Xk = Xn −Xτ∧n .
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It follows from Theorem 1.5 that

Theorem 1.6. Let τ be a stopping time of F = {Fn}n∈N0
. Let (Xn)n∈N0

is a
(sub-, super-) martingale with respect to F. Then

Xτ := (Xτ∧n)n∈N0
, X −Xτ = (Xn −Xτ∧n)n∈N0

both are (sub-, super-) martingale with respect to F. We call Xτ the stopped
process.

Exercise 1.2. Show Theorem 1.6 directly.

D Doob’s Decomposition for Submartingales

The main result in this subsection is that a submartingale can be decomposed into
a sum sonsisting of a martingale and a increasing predictable process. However,
we will consider the decomposition for more stochastic processes.

Let X = (Xn)n∈N0
be an integrable process adapted to the filtration F =

(Fn)n∈N0
. We will decompose X into a sum consisting of a F-martingale and a

F-predictable process. In other words, we want for all n ∈ N0,

Xn =Mn +An , E (Mn+1|Fn) =Mn , and An+1 ∈ Fn .

So we must have

E (Xn|Fn−1) = E (Mn|Fn−1) + E (An|Fn−1)

=Mn−1 +An = Xn−1 −An−1 +An , for n ≥ 1 ,

and it follows that

An −An−1 = E (Xn|Fn−1)−Xn−1 , for n ≥ 1 . (1.1)

Let A0 = 0, then we get

An =

n∑
m=1

E (Xm|Fm−1)−Xm−1 =

n∑
m=1

E (∆Xm|Fm−1) , for n ≥ 1 .
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To check that our recipe works, we observe that An ∈ Fn−1 for all n ≥ 1. To
prove that Mn = Xn −An is a martingale, we note that using (1.1)

E (Mn|Fn−1) = E (Xn −An|Fn−1)

= E (Xn|Fn−1)−An = Xn−1 −An−1 =Mn−1 ,

for all n ≥ 1, which deduces that {Mn,Fn}n≥0 is a martingale.

Theorem 1.7 (Doob’s Decomposition). Let X = (Xn)n≥0 be an integrable pro-
cess adapted to the filtration F = (Fn)n≥0. Then there exists a unique decompo-
sition

X =M +A ,

where A is F-predictable with A0 = 0 and M is a F-martingale.

Proof. Although the construction above implies the uniqueness, we give a another
point to show uniqueness of the decomposition. Let X = M+ A = M ′ + A′ be
two such decompositions. Then M −M ′ = A′ − A is a predictable martingale,
hence Mn −M ′

n =M0 −M ′
0 = 0 for all n.

Remark 1.8. Evidently, it follows from (1.1) that X is a submartingale if and only
if A is monotone increasing, and for this case, A is called the increasing process
associated with X, or the compensator of X.

Square-integrable martingale The Doob decomposition plays a key role in
the study of square-integrable martingales.

Lemma 1.8 (Orthogonality, Conditional Variance). Let (Xn,Fn)n∈N0 be a square-
integrable martingale. Then for n ≥ m ≥ 0,

Xn −Xm ⊥ L2(Fm,P) ,

and
Var(Xn|Fm) = E

[
(Xn −Xm)

2 |Fm

]
= E

(
X2

n|Fm

)
−X2

m a.s..

Remark 1.9. This is the conditional analogue of

Var(X) = E(X − EX)2 = EX2 − (EX)2

and is proved in exactly the same way.
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Let X = {Xn}n∈N0
be a square-integrable martingale with respect to the fil-

tration F = {Fn}n∈N0 . The application of Doob’s decomposition depends on the
observation that {X2

n}n∈N0 is a F-submartingale. Denote by 〈X〉 the increasing
process associated to X2, which is called the quadratic variation process of
X, then for each n ∈ N,

〈X〉n =

n∑
m=1

E
[
∆X2

m|Fm−1

]
=

n∑
m=1

E
(
X2

m|Fm−1

)
−X2

m−1

=

n∑
m=1

Var (Xm|Fm−1) =

n∑
m=1

E
[
(∆Xm)

2 |Fm−1

]
,

and one can see that

E〈X〉n = E |Xn −X0|2 = EX2
n − EX2

0 .

Example 1.9. It is useful to observe that if S0 = 0 and Sn = ξ1 + · · · + ξn,

where (ξn) is a sequence of independent r.v.’s with Eξi = 0 and Eξ2i < ∞, then
S = (Sn)n∈N0

is a square-integrable martingale. The the quadratic variation
process of S is given by

〈S〉n = ES2
n = Var(Sn) , for all n ≥ 1 ,

is not random and, indeed, coincides with the variance.

Example 1.10. Let ξ1, ξ2, . . . be independent, square integrable random vari-
ables with Eξn = 1 for all n ∈ N. Let Xn = Πn

i=1ξi for n ∈ N and X0 = 1. Then
X = (Xn)n∈N0

is a square integrable martingale with respect to the filtration F

generated by (ξn). For n ≥ 1,

E
[
(∆Xn)

2 |Fn−1

]
= E

[
(ξn − 1)

2
X2

n−1|Fn−1

]
= Var(ξn)X2

n−1 .

Hence
〈X〉n =

n∑
m=1

Var(ξm)X2
m−1.

We see that the square variation process can indeed be a truly random process.
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Supplementary materials∗ If X = (Xn)n∈N0
and Y = (Yn)n∈N0

are square-
integrable martingales relative to the filtration F = (Fn)n∈N0

, we put 〈X,Y 〉0 = 0

and
〈X,Y 〉n =

n∑
i=1

E (∆Xm∆Ym|Fm−1) , for n ∈ N .

One can see that
〈X,Y 〉n =

〈X + Y 〉n − 〈X − Y 〉n
4

.

It is easily verified that XY − 〈X,Y 〉 = (XnYn − 〈X,Y 〉n)n≥0 is a F-martingale,
and hence

XY =
(
XY − 〈X,Y 〉

)
+ 〈X,Y 〉

gives the Doob’s decomposition of XY .

Example 1.11. In the case when Xn = ξ1 + · · ·+ ξn, Yn = η1 + · · ·+ ηn, where
(ξn) and (ηn) are sequences of independent random variables with Eξi = Eηi = 0

and Eξ2i <∞,Eη2i <∞, the variable 〈X,Y 〉n is given by

〈X,Y 〉n =

n∑
i=1

Cov (ξi, ηi)

1.2 Optional Sampling Theorem

In this section, we will dsicuss preservation of martingale property under a ran-
dom time change. If X = (Xn)n≥0 is a martingale or a submartingale with
respect to the filtration F = (Fn)n≥0, then we have

EX0 = EXn or EX0 ≤ EXn

for every n. Is this property preserved if the time n is replaced by a finite
stopping time ? Unfortunately, in general case, the answer is no, see Example
1.13, 1.14. The following basic theorem describes the “typical” situation, in
which, in particular,

EX0 = EXT or EX0 ≤ EXT . (1.2)
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A Bounded stopping times

Lemma 1.9. Suppose T is a stopping time of the filtration F = (Fn)n∈N0 , and
T is bounded; i.e., T ≤ k for smoe k ∈ N.

(i) If (Xn) is a F-martingale, then EX0 = EXT = EXk. Moreover, martingale
property is preserved at T :

E(Xk|FT ) = XT a.s..

(ii) If (Xn) is a F-submartingale, then EX0 ≤ EXT ≤ EXk. Moreover, sub-
martingale property is preserved at T :

E(Xk|FT ) ≥ XT a.s.. (1.3)

Proof. Evidently, (ii) implies (i), so we only show (ii). By Theorem 1.6, XT and
X −XT both are F-submartingale, so

EX0 = EXT∧0 ≤ EXT∧k = EXT and,

EXk − EXT = EXk − EXT∧k ≥ E(X0 −XT∧0) = 0 .

Thus EX0 ≤ EXT ≤ EXT . To prove (1.3), we have to show that for any A ∈ FT ,
EXT 1A ≤ EXk1A, and hence it suffices to show that

EXT 1A + EXk1Ac ≤ EXk .

Define a random time S by S := T1A + k1Ac . Clearly, S is a stopping time of F
and bounded by k, thus

EXS = EXT 1A + EXk1Ac ≤ EXk .

Remark 1.10. In fact there is a direct way to show (1.3). Take any A ∈ FT .
Observe that for any 0 ≤ i ≤ k, A ∩ {T = i} ∈ Fi, hence

EXT 1A1{T=i} = EXi1A1{T=i} ≤ EXk1A1{T=i} .

Then we get
E [XT 1A] ≤ E [Xk1A] ,
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and it follows that E(Xk|FT ) ≥ XT a.s.. However, if we want to show E(XT |F0) ≥
X0 a.s., this arguement does not work. But the method used in the proof of
Lemma 1.9 works.

Exercise 1.3. Let X = (Xn)n≥0 be a integrable process adapted to the filtration
F = (Fn)n≥0. Then X is a F-martingale if and only if for any bounded stopping
time T of F, EXT = EX0.

Lemma 1.10. Suppose T, S are two bounded stopping times of F = (Fn)n∈N0

and S ≤ T ≤ k, where k ∈ N is a constant.

(i) If (Xn) is a F-martingale, then EX0 = EXS = EXT = EXk. Moreover,
martingale property is preserved at time T and S:

E(XT |FS) = XS a.s..

(ii) If (Xn) is a F-submartingale, then EX0 ≤ EXS ≤ EXT ≤ EXk. Moreover,
submartingale property is preserved at time T and S:

E (XT |FS) ≥ XS a.s.. (1.4)

Proof. We have only to show (ii). In order to prove that EXS ≤ EXT , define a
F-predictable process H by letting Hn := 1{n≤T} − 1{n≤S} for n ≥ 1. Clearly H
is non-negative and bounded, so

H ·X = XT −XS

is a F-submartingale by Theorem 1.5. Thus EXS ≤ EXT . To show (1.4), we
have to show that for any A ∈ FS , EXS1A ≤ EXT 1A. Then it suffices to prove
that

EXS1A + EXT 1Ac ≤ EXT .

Let N defined by N := S1A + T1Ac . Clearly, N is a stopping time of F and
bounded by T . In fact, for any n ∈ N0,

{N = n} =
(
{S = n} ∩A

)
∪
(
{T = n} ∩Ac

)
=
(
{S = n} ∩A

)
∪
(
{T = n} ∩ {S ≤ n} ∩Ac

)
∈ Fn .

Then the desired result follows from EXN ≤ EXT .
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Example 1.12. Let X = (Xn) be a F- (sub-, super-)martingale , and assume
(Tn) is a monotone increasing sequence of bounded stopping times. Then (XTn)

is a (sub-, super-) martingale with respect to the filtration (FTn).

In particular, for any stopping time T of F, the stopped process XT is a (sub-,
super-)martingale with respect to to both F and FT := (Fn∧T )n∈N0

.

Theorem 1.11 (Optinal Sampling Theorem I). Let X = (Xn) be a (sub-
)martingale with respect to the filtration F = (Fn)n∈N0 , let T, S be two bounded
stopping times of F. Then

E(XT |FS) (≥) = XT∧S a.s.,

in other words, E(XT |FS) (≥) = XS a.s. on {T ≥ S}: The (sub-)martingale
property is preserved.

Proof. It suffices to show the submartingale case. Take any A ∈ FS . We need to
show that EXS∧T 1A ≤ EXT 1A, so it suffices to prove that

EXS∧T 1A + EXT 1Ac ≤ EXT .

Let N defined by N := (S ∧ T )1A + T1Ac = S1A∩{S≤T} + T1(A∩{S≤T})c . We
claim that, N is a stopping time of the filtration F and bounded by T . In fact,
for any positive integer n,

{N = n} =
(
{S = n} ∩A ∩ {S ≤ T}

)
∪
(
{T = n} ∩ (A ∩ {S ≤ T})c

)
=
(
{S = n} ∩A ∩ {S ≤ n}

)
∪
(
{T = n} ∩ (A ∩ {S ≤ n})c

)
∈ Fn .

Then the desired result follows from EXN ≤ EXT by Theorem 1.10.

Counterexamples The first inequality in Theorem 1.9 need not hold for un-
bounded stopping times. We will give two important counterexamples, which
should be keep in mind as you read the rest of this chapter.

Example 1.13. Let {Sn} be a simple random walk with S0 = 1 and let T =

inf {n ≥ 0 : Sn = 0}. As we konw, the simple random walk is ecurrent, hence
P(T <∞) = 1. Then

EST = 0 < 1 = ES0 .
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Later, we will give conditions that guarantee EX0 ≤ EXT for unbounded T .

Example 1.14. Consider the martingale betting strategy in Example 1.8. Let

T := inf{n ≥ 1 : ξn = 1} = inf{n ≥ 1 : (H ·X)n = 1} ,

and B-C lemma implies P(T <∞) = 1. But

E(H ·X)T = 1 > 0 = E (H ·X)0 .

B Finite Stopping Times

Often one does want to conclude the (1.2) for unbounded stopping times, so it
is useful to give conditions under which it holds. Let’s try to derive the equality
and see what conditions we need to impose. Suppose that X = (Xn)n∈N0 is a
martingale and T are stopping times, with respect to the filtration F = (Fn)n∈N0 .
In order that XT makes sense, we will firstly assume that we stop, i.e. P(T <

∞) = 1. Note that for each n ∈ N,

EX0 = EXn∧T = EXT 1{T≤n} + EXn1{T>n} .

Secondly, we suppose that E |XT | <∞, then by domainted convergence theorem,

lim
n→∞

EXT 1{T≤n} = EXT .

In Example 1.13 and Example 1.14, this condition did not cause a problem since
ST = 0 and (H ·X)T = 1. Thus, if we can show that

lim
n→∞

E |Xn| 1{T>n} = lim
n→∞

E |XT∧n −XT | = 0 ,

i.e., XT∧n → XT in L1, then we have

EXT = EX0 .

In fact, we can deduce a more stronger result.
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Theorem 1.12 (Optional Sampling Theorem II). Let X = (Xn)n∈N0
be a (sub-

)martingale with respect to the filtration F = (Fn)n∈N0 . Let T be an a.s. finite
stopping time of F for which E|XT | <∞. If XT∧n → XT in L1, i.e.,

lim
n→∞

E |Xn| 1{T>n} = 0 , (1.5)

then for any a.s. finite stopping time S of F so that E|XS | <∞,

E(XT |FS) (≥) = XT∧S a.s.,

in other words, on {T ≥ S}, E(XT |FS) (≥) = XS a.s.: The (sub-)martingale
property is preserved.

Remark 1.11. Observe that XT∧n → XT a.s., so XT∧n → XT in L1 if and only if
the stopped process (XT∧n) is uniformly integrable. We assume that E|XS | <∞
to guatantee E|XT∧S | < ∞, since we have |XT∧S | ≤ |XT | + |XS |. In fact it
suffices ensure that E|XT∧S | < ∞. As we will see later, (XT∧n) is uniformly
integrable implies that E|XT∧S | <∞ for any stopping times S of F.

Proof. We only prove the submartingale case. It suffices to show that for any
A ∈ FS , EXT 1A ≥ EXT∧S1A, and this is equivalent to

E (XT 1{T>S}1A) ≥ E (XS1{T>S}1A) .

Since {S < T} ⊂ {S <∞}, we only need to show for each n ∈ N0,

E (XT 1{T>S}1A1{S=n}) ≥ E (XS1{T>S}1{S=n}1A) .

Let B = A ∩ {S = n} ∈ Fn, then the previous equality is

E (XT 1{T>n}1B) ≥ E (Xn1{T>n}1B) .

Observe that this equality holds if we suppose T is a bounded, since E(XT |Fn) ≥
Xn on {T > n} by Theorem 1.11. Thus we shall use a sequence of bounded
stopping times, {T ∧m}m≥1 to approximate the unbounded finite stopping times
T . Trivially for any m ≥ n,

E (XT∧m1{T>n}1B) = E (XT∧m1{T∧m>n}1B) ≥ E (Xn1{T>n}1B) . (1.6)

Since XT∧m → XT in L1, the desired result follows.
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Remark 1.12. In fact, in the case of submartingale, we can ask a weaker condition.
Observe that it follows from (1.6) that

E (XT 1{n<T≤m}1B) + E (Xm1{T>m}1B) ≥ E (Xn1{T>n}1B) . (1.7)

Note that E (Xm1{T>m}1B) ≤ EX+
m 1{T>m}. Letting m → ∞, by domainted

convergence theorem, we have

E (XT 1{T>n}1B) + lim inf
m→∞

EX+
m 1{T>m} ≥ E (Xn1{T>n}1B) .

So we only need to ask

lim inf
m→∞

EX+
m 1{T>m} = 0 .

Corollary 1.13. Suppose that X = (Xn)n∈N0 is a F-supermartingale, T is a a.s.
finite stopping time so that E|XT | <∞. If

lim inf
n→∞

EX−
n 1{T>n} = 0 .

then for any a.s. finite stopping time S with respect to F and E|XS | <∞,

E(XT |FS) ≤ XT∧S a.s.,

in other words, on {T ≥ S}, E(XT |FS) ≤ XS a.s.: The supermartingale property
is preserved.

C Uniform Integrability and Optional Sampling∗

In this subsection, some theorems in Section 1.4 and Section 1.5 are need. Recall
that in Theorem 1.12, we suppose X a F-(sub-)martingale, T is a finite stopping
time, and XT∧n → XT in L1. In fact, since XT = (XT∧n)n≥0 is also a F-
(sub-)martingale, it follows from Lemma 1.27 that we only need to ensure that
XT = (Xn∧T ) is uniformly integrable. Moreover, the condition that T is finite is
not needed. If (Xn∧T ) is uiformly integrable F-(sub-)martingale, define

XT (ω) := lim sup
n→∞

Xn∧T (ω)(ω) for every ω ∈ Ω . (1.8)
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Then XT makes sense. Besides, on {T <∞}, XT (ω) = XT (ω)(ω), the definition
is the same as before; XT is integrable and Xn∧T → XT a.s. and in L1 by Lemma
1.27. The following lemma implies that (Xn∧T∧S)n≥0 is uniformly integrable for
any F-stopping times S. Also, XT∧S makes sense and E|XT∧S | <∞.

Lemma 1.14. Let X = (Xn)n∈N0
be a uniformly integrable F-submartingale. Let

T be any stopping time of F. Then XT = (Xn∧T )n∈N0
is a uniformly integrable

F-submartingale.

Proof. Note that for any n ∈ N0,

E |Xn∧T | = 2EX+
n∧T − EXn∧T ≤ 2EX+

n∧T − EX0 .

Since (X+
n ) is a submartingale and n ∧ T is a bounded topping time, so

EX+
n∧T ≤ EX+

n ≤ sup
n∈N0

E|Xn| .

Thus
sup
n∈N0

E |Xn∧T | ≤ 2 sup
n∈N0

E|Xn| − EX0 <∞ .

The convergence theorem for submartingales gives XT∧n → XT (here XT is
defined by (1.8)) a.s. and E|XT | < ∞. With this established, the rest is easy.
For any λ > 0, we have

E|XT∧n|1{|XT∧n|>λ}

= E|XT |1{|XT |>λ,T≤n} + E|Xn|1{|Xn|>λ,T>n}

≤ E|XT |1{|XT |>λ} + sup
n∈N0

E|Xn|1{|Xn|>λ} .

Since E |XT | <∞ and (Xn)n≥0 is uniformly integrable, the desired result follows.

Therefore, we have the following theorems :

Theorem 1.15 (Optional Sampling Theorem III). Suppose X = (Xn)n∈N0
is a

(sub-)martingale with respect to the filtration F = (Fn)n∈N0
. Let T be a stopping
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time of F. If the stopped process XT is uniformly integrable, then, for any stopping
time S of F, we have E|XT∧S | <∞, and

E(XT |FS) (≥) = XT∧S a.s..

in other words, E(XT |FS) (≥) = XS a.s. on {T ≥ S}: The (sub-)martingale
property is preserved.

Altough we have discussed the sufficiency for this theorem at the begining of
this subsection, we shall give a rigorous proof for the submartingale case.

Proof. Since XT is uniformly bounded, XT makes sense and E|XT | < ∞. By
Lemma 1.14, E|XS∧T | < ∞. Now, it suffices to show that for any A ∈ FS ,
denoted by B the intersection A ∩ {S = n} ∈ Fn,

E (XT 1{T>n}1B) ≥ E (Xn1{T>n}1B) .

Note that for any m ≥ n, we have

E (XT∧m1{T>n}1B) = E (XT∧m1{T∧m>n}1B) ≥ E (Xn1{T>n}1B) .

Since XT∧m → XT in L1, the desired result follows.

For uniformly integrable F-submartingale X = (Xn)n∈N0 , define X∞ by
X∞ := lim supnXn, then Xn → X∞ a.s. and in L1. Thus for any F-stopping
time T , XT is well-defined. Besides, this definition here and in (1.8) coincide.

Corollary 1.16. Let X = (Xn) be a uniformly integrable (sub-)martingale with
respect to F = (Fn)n∈N0

. Let T and S are two F-stopping times. Then XT , XS

are integrable, and
E(XT |FS) (≥) = XT∧S a.s.,

in other words, E(XT |FS) (≥) = XS a.s. on {T ≥ S}: The (sub-)martingale
property is preserved.

Corollary 1.17. Let X = (Xn)n∈N0
be a uniformly integrable (sub-,super-) mar-

tingale with respect to F = (Fn) and let T1 ≤ T2 ≤ . . . be stopping times of F.
Then (XTn

)n∈N is a uniformly integrable (sub-,super-) martingale with respect to
to the filtration (FTn

).
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Theorem 1.18 (Optional Sampling Theorem IV). Let X = (Xn)n∈N0
be a (sub-)

martingale with respect to the filtration F = (Fn)n∈N0 with

E (|∆Xn| | Fn−1) ≤ C for all n ≥ 1 .

If T is a stopping time of F with ET < ∞, then the stopped process XT is
uniformly integrable, and hence for any stopping times S, we have E|XT∧S | <∞,
and

E(XT |FS) (≥) = XT∧S a.s.,

in other words, E(XT |FS) (≥) = XS a.s. on {T ≥ S}: The (sub-)martingale
property is preserved.

Proof. It suffices to show that XT is uniformly integrable. Firstly, ET < ∞
implies T <∞ a.s.. Observe that

sup
n∈N0

|XT∧n| ≤ |X0|+
∞∑
k=1

|∆Xk| 1{k≤T} .

So, to prove uniform integrability, it suffices to show that the RHS has finite
expectation. Now, {k ≤ T} ∈ Fk−1, so

E |∆Xk| 1{k≤T} = E
[
E(|∆Xk| 1{k≤T}|Fk−1)

]
≤ C P(T ≥ k) ,

and
E

∞∑
k=1

|∆Xk| 1{k≤T} ≤ C

∞∑
k=0

P(T ≥ k) = C ET <∞ .

We have completed the proof.

Exercise 1.4. Suppose that X = (Xn)n∈N0
is a non-negative F-supermartingale.

Use Fatou’s lemma to show that, for any stopping time T , we have

EXT ≤ EX0 ,

where XT = X∞ := lim supnXn a.s. on {T = ∞}.

The following example is a direct application of the optional sampling theorem
reading.
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Example 1.15. Let X = (Xn)n∈N0
be a uniformly integrable submartingale

with respect to F. Then the family

{XT : T is stopping time of F}

is uniformly integrable.

To see this, since the martingale (Xn)n∈N0
is uniformly integrable, it follows

from Corollary 1.16 that for any stopping time T ,

E(X∞|FT ) = XT a.s..

As we have learned in the course of measure theory, since E|X∞| ≤ ∞,

{E(X∞|G) : G is a sub-sigma-field of F}

is an uniformly integrable family. Then the desired result follows.

1.3 Applications(I) : Random walks

Let (ξn)n≥1 be a sequence of i.i.d. r.v.’s. Let Sn = S0 + ξ1 + · · ·+ ξn for n ∈ N,
where S0 is some constant x. Let F = (Fn)n≥0 defined by Fn = σ (ξ1, . . . , ξn) for
n ≥ 1 and F0 = {∅,Ω}. We call the process (Sn)n≥0 a random walk starting at
x. Symmetric simple random walk refers to the special case in which

P (ξ1 = 1) = P (ξ1 = −1) =
1

2
.

Asymmetric simple random walk refers to the special case in which

P (ξ1 = 1) = p , P (ξ1 = −1) = q

with p, q ∈ (0, 1), p 6= q and p+ q = 1. We will now derive some result by using
the three martingales from Example 1.4, 1.5, 1.6.

Theorem 1.19. Let (Sn)n≥0 be symmetric simple random walk with S0 = x ∈ Z.
For j ∈ Z, set Tj = inf{n ≥ 0 : Sn = j}. Let τ(a,b) = Ta ∧ Tb = inf{n ≥ 0 : Sn /∈
(a, b)}, then
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(i) For the hitting probability, we have

Px

(
Sτ(a,b)

= a
)
=
b− x

b− a
, Px

(
Sτ(a,b)

= b
)
=
x− a

b− a
.

(ii) For the mean hitting time, we have

Exτ(a,b) = (b− x)(x− a) .

Remark 1.13. This theorem can be showed by the techniques in Markov chian,
however, we will give a proof using martingale method.

Proof. In this proof we write τ = τ(a,b) for short. To see that Px(τ < ∞) = 1,
note that if we have (b− a) consecutive steps of size +1 we will exit the interval.
From this, by induction, it follows that

Px(τ > k(b− a)) ≤
(
1− 1

2b−a

)k

, for k ∈ N .

which implies that Exτ <∞.

(i). Clearly Ex |Sτ | <∞ and (Sn∧τ ) are uniformly integrable,

ExSτ = aPx (Sτ = a) + bPx (Sτ = b) = ExS0 = x .

Note that
Px (Sτ = a) + Px (Sτ = b) = 1 ,

we can slove the equations systerm.

(ii). The second result is an immediate consequence of the first. Note that
(S2

τ∧n−(τ∧n))n≥0 is domainted by an integrable r.v., thus is uniformly integrable.
So

Ex(S
2
τ − τ) = ES2

0 = x2.

Using the result of (i),

Exτ = ExS
2
τ − x2 = a2

b− x

b− a
+ b2

x− a

b− a
= (b− x)(x− a) ,

which completes the proof.
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Remark 1.14. Given n ∈ N, we have P0(Tn < T−m) = m/(m+ n) for all m ∈ N.
Note that

{Tn <∞} =

∞⋃
m=1

{Tn < T−m}

Thus we get P0(Tn <∞) = 1.

As we can see, we deduce Theorem 1.19 from

ExSτ(a,b)
= x and ExS

2
τ(a,b)

= Exτ(a,b) × 1 = Exτ(a,b) Eξ21 .

In fact, these property holds for more general random walks and stopping times.

Theorem 1.20 (Wald’s Identities). Let (Sn)n≥0 be a random walk starting at
x. Suppose that E|ξ1| <∞ and let µ = Eξ1. Then, for any stopping times τ with
respect to F with E τ <∞,

ESτ = x+ µEτ . (1.9)

If in addition E ξ21 <∞, let σ2 = Var(ξ1), then

E(Sτ − µτ)2 = x2 + σ2 Eτ . (1.10)

Proof. Firstly, since (Sn − nµ,Fn)n≥0 is a martingale, note that

E(|∆Sn||Fn−1) = E(|ξn||Fn−1) = E|ξ1| <∞ ,

by Theorem 1.18 we have

E(Sτ − µτ) = ES0 = x .

The (1.9) follows. On the one hand, to show (1.10), without loss of generality,
we assume that µ = 0. Then

(S2
n − nσ2,Fn)n≥0

is a martingale, so

ES2
τ∧n = x2 + σ2 E(τ ∧ n) , for all n . (1.11)

Letting n → ∞, by Fatou’s lemma we get ES2
τ ≤ σ2 Eτ . On the orther hand, it

suffices to show that
ES2

τ∧n ≤ ES2
τ for all n .
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Observe form (1.11) that
sup
n∈N0

ES2
τ∧n <∞ ,

so (|Sτ∧n|)n≥0 is uniformly integrable. By Theorem 1.12, we have ,

E(|Sτ ||Fn) ≥ |Sτ∧n| for all n .

Thanks to Jensen’s inequality, we have

E(S2
τ |Fn) ≥ E(|Sτ ||Fn)

2 ≥ S2
τ∧n ,

so the desired result follows.

Remark 1.15. Indeed, since (Sτ∧n) is L2 bounded, by Lp convergence theorem
(Theorem 1.35), Sτ∧n → Sτ in L2. Thus

ES2
τ = lim

n→∞
ES2

τ∧n = x2 + σ2 E τ .

We should study the technique in this proof of (ii), because it is useful in a number
of situations. We used that martingale property preserved at bounded stopping
times τ ∧ n, then let n→ ∞, and use an appropriate convergence theorem.

Theorem 1.21. Let (Sn)n≥0 be symmetric random walk with S0 = 0 and let
T1 = inf{n ≥ 0 : Sn = 1}. Then

E0 s
T1 =

1−
√
1− s2

s
for s > 0 .

Inverting the generating function we find that

P0 (T1 = 2n− 1) =
1

2n− 1
· (2n)!
n!n!

2−2n .

Proof. By Remark 1.14, P0 (T1 <∞) = 1. We will use the exponential martingale
Xn = eθSn/ϕ(θ)n with θ > 0 and

ϕ(θ) = E eθξ1 =
eθ + e−θ

2
.
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Clearly, ϕ(θ) ≥ 1. Thus for each n, |Xn∧T1
| ≤ eθ, and it follows form the bounded

convergence theorem that

EXT1
= 1 and hence E

[
ϕ(θ)−T1

]
= e−θ .

To convert this into the formula for the generating function we set

ϕ(θ) =
eθ + e−θ

2
=

1

s
.

Letting x = e−θ and doing some algebra we want x+ x−1 = 2/s or

sx2 − 2x+ s = 0 .

The quadratic equation implies

x =
2±

√
4− 4s2

2s
=

1±
√
1− s2

s
,

since EsT1 =
∑∞

k=1 s
kP (T1 = k) we want the solution that is 0 when s = 0,

which is (1−
√
1− s2)/s.

To invert the generating function we use Newton’s binomial formula

(1 + t)a = 1 +

(
a

1

)
t+

(
a

2

)
t2 +

(
a

3

)
t3 + . . .

Taking t = −s2 and a = 1/2 we have√
1− s2 = 1−

(
1/2

1

)
s2 +

(
1/2

2

)
s4 −

(
1/2

3

)
s6 + . . .

1−
√
1− s2

s
=

(
1/2

1

)
s−

(
1/2

2

)
s3 +

(
1/2

3

)
s5 + . . .

The coefficient of s2n−1 is

(−1)n−1 (1/2)(−1/2) · · · (3− 2n)/2

n!
=

1 · 3 · · · (2n− 3)

n!
· 2−n

=
1

2n− 1

(2n)!

n!n!
2−2n

which completes the proof.
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Theorem 1.22. Let (Sn)n≥0 be a asymmetric simple random walk starting at
x ∈ Z. Set P (ξi = 1) = p and P (ξi = −1) = q ≡ 1− p with p 6= q.

(i) Let φ(k) =
(

q
p

)k
for k ∈ Z, then (φ (Sn))n≥0 is a martingale.

(ii) If we let Tj = inf {n : Sn = j} then for a < x < b,

Px (Ta < Tb) =
φ(b)− φ(x)

φ(b)− φ(a)
, Px (Tb < Ta) =

φ(x)− φ(a)

φ(b)− φ(a)
.

(iii) If 1/2 < p < 1, a < 0 < b then

P0 (Ta <∞) =
1

φ(a)
, P0 (Tb <∞) = 1 , E0 Tb =

b

p− q
.

Proof. (i). Clearly φ(Sn) is integrable. For n ≥ 0,

Ex (φ (Sn+1) |Fn) =

(
q

p

)Sn

Ex

[(
q

p

)ξn+1
∣∣∣∣Fn

]

=

(
q

p

)Sn

(p+ q) = φ (Sn) .

(ii). Let τ ≡ τ(a,b) := Ta ∧ Tb, Since (φ (Sτ∧n))n≥0 is bounded, so

Ex φ (Sτ ) = Px (Ta < Tb)φ(a) + Px (Tb < Ta)φ(b) = Ex φ (x) .

Note that
Px (Ta < Tb) + Px (Tb < Ta) = 1 ,

then we get (ii).

(iii). Note that Ta <∞ if and only if Ta < Tb for some (random) b. Therefore,

P0(Ta <∞) = lim
b→∞

P0(Ta < Tb) = lim
b→∞

φ(b)− φ(0)

φ(b)− φ(a)
=

1

φ(a)
.

For the same reason,

P0 (Tb <∞) = lim
a→−∞

Px (Tb < Ta) = lim
a→−∞

φ(0)− φ(a)

φ(b)− φ(a)
= 1 .
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To show the last conclusion, we note that (Sn− (p− q)n)n≥0 is a martingale. By
optional sampling theorem,

E0 STb∧n = (p− q)E0 (Tb ∧ n) .

Note that Now b ≥ STb∧n ≥ infn Sn and

E0

(
− inf

n
Sn

)
=

∞∑
j=1

P0

(
− inf

n
Sn ≥ j

)
=

∞∑
j=1

P0 (τ−j <∞) <∞ ,

then letting n→ ∞, the desired result follows from domainted convergencetheo-
rem and monotone convergence theorem.

1.4 Almost sure martingale convergence

In this section, we present the usual martingale convergence theorems and give
some counterexamples. All the result is contained in the following theorem.

Theorem 1.23 (Martingale Convergence Theorem). Let (Xn,Fn)n∈N0
be a (sub-

,super-) martingale. If (Xn) is L1-bounded, then there exists an integrable r.v.
X∞ ∈ F∞ so that Xn → X∞ almost surely.

The assumptions of Theorem 1.23 do not guarantee convergence in L1. In
other words, a (sub-,super-) martingale is L1 bounded doesn’t ensure it is uni-
formly integrable.

Example 1.16. Consider the martingale transform H ·M in Example 1.8. Since
H is a locally bounded predictable process and M is a martingale, H ·M is a
martingale. Clearly H ·M is L1 bounded:

E|(H ·M)n| ≤ 1 +
1

2n
× (1 + 2 + · · ·+ 2n−1) ≤ 2 .

However, as we have shown, (H ·M)n → (H ·M)∞ a.s. with

1 = E [(H ·M)∞] > E [(H ·M)n] = 0 .

So the convergence is not in L1.
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Example 1.17. Let (ξj)j≥1 be i.i.d. with P (ξj = 0) = P (ξj = 2) = 1/2, for all
j ≥ 1. and define Mn =

∏n
j=1 ξj for n ≥ 1, and M0 = 1. Let F0 = {∅,Ω}

and Fn = σ(ξ1, · · · , ξn). Then (Mn,Fn)n≥0 is a non-negative martingale with
E (Mn) = 1 for all n (see Example 1.3). However, by Borel-Cantelli lemma,

Mn →M∞ = 0 a.s..

Thus
E(Mn) = 1 > E(M∞) = 0 ,

and the convergence is not in L1.

We shall give another important counterexample.

Example 1.18. Let {Sn} be a symmetric simple random walk with S0 = 1. Let

T0 = inf {n ≥ 0 : Sn = 0}

and let Xn = ST0∧n for all n ∈ N0. Theorem 1.6 implies that {Xn} is a non-
negative martingale. Theorem 1.23 implies {Xn} converges to a limit X∞ < ∞
that must be ≡ 0, since convergence to k > 0 is impossible. (If Xn = k > 0 then
Xn+1 = k± 1.) Since EXn = EX0 = 1 for all n and X∞ = 0, convergence cannot
occur in L1.

The road to martingale convergence theorem

We start with the core of the martingale convergence theorems, the so-called
upcrossing inequality. Let F = (Fn)n∈N0

be a filtration. Recall that F∞ :=

σ(∪nFn). Suppose X = (Xn)n∈N0
is a real-valued process adapted to the filtra-

tion F. Let a, b ∈ R with a < b.

If we think of X as a stock price, it would be a sensible trading strategy to
buy the stock when its price has fallen below a and to sell it when it exceeds b at
least if we knew for sure that the price would always rise above the level b again.
Each time the price makes such an upcrossing from a to b, we make a profit of at
least b− a. If we get a bound on the maximal profit we can make, dividing it by
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b− a gives a bound on the maximal number of such upcrossings. If this number
is finite for all a < b, then the price has to converge.

Let us get into the details. Define stopping times σ0 ≡ 0 and

τk := inf {n ≥ σk−1 : Xn ≤ a} for k ∈ N ,
σk := inf {n ≥ τk : Xn ≥ b} for k ∈ N .

Note that τk = ∞ if σk−1 = ∞, and σk = ∞ if τk = ∞. We say that X has its k
th upcrossing over [a, b] between τk and σk if σk <∞. For n ∈ N, define

Ua,b
n (X) :=

∞∑
k=0

1{σk≤n}

as the number of upcrossings over [a, b] until time n.

Lemma 1.24 (Upcrossing Inequality). Let (Xn,Fn)n∈N0
be a submartingale.

Then

EUa,b
n (X) ≤

E
[
(Xn − a)

+
]
− E

[
(X0 − a)

+
]

b− a
for n ∈ N .

Proof. Formally, the intimated trading strategy H is described for n ∈ N by

Hn :=

{
1, if n ∈ {τk + 1, . . . , σk} for some k ∈ N
0, else.

H is nonnegative and predictable since, for all n ∈ N

{Hn = 1} =

∞⋃
k=1

{τk ≤ n− 1} ∩ {σk > n− 1}

and each of the events is in Fn−1.

Define Y = X ∨ a, then Y is a F-submartingale. Intuitively,

(H · Y )n ≥ (b− a)Ua,b
n (X) for all n ∈ N , (1.12)

since each upcrossing results in a profit ≥ (b−a) and a final incomplete upcrossing
(if there is one) makes a nonnegative contribution to the right-hand side. It is
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for this reason we had to replace X by Y . Then it follows from Theorem 1.6 that
H · Y and (1−H) · Y are submartingales. Now note that

Yn − Y0 = (H · Y )n + ((1−H) · Y )n ,

hence

E (Yn − Y0) ≥ E [(H · Y )n] + E[((1−H) · Y )n] ≥ (b− a)EUa,b
n (X) ,

then the desired result follows. Finally, we shall show (1.12) rigorously. Note
that, on {Ua,b

n (X) = k} for some k ∈ N,

Yσi − Yτi = Yσi − a ≥ b− a for all i = 1, · · · , k ,

and hence

(H · Y )σk
=

k∑
i=1

σi∑
j=τi+1

(Yj − Yj−1) =

k∑
i=1

(Yσi − Yτi) ≥ k(b− a) .

For n ∈ {σk, . . . , τk+1} , we have

(H · Y )n = (H · Y )σk
≥ k(b− a).

On the other hand, for n ∈ {τk+1, . . . , } , we have

(H · Y )n ≥ (H · Y )τk+1
= (H · Y )σk

≥ k(b− a) .

Hence (1.12) holds.

Remark 1.16. The key fact is that (1−H) ·Y is a submartingale, In other words,
no matter how hard you try you can’t lose money betting on a submartingale.

From the upcrossing inequality, we get easily the following theorem.

Theorem 1.25 (Submartingale Convergence). Let (Xn,Fn)n∈N0
be a submartin-

gale. If (Xn) is L1 bounded, i.e.,

sup
n∈N0

E|Xn| <∞
(
⇔ sup

n∈N0

EX+
n <∞

)
,

then there exists an integrable r.v. X∞ ∈ F∞, so that Xn → X∞ almost surely.
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Remark 1.17. Using the equality |x| = 2x+−x and the submartingle property of
(Xn), we have

E|Xn| = 2EX+
n − EXn ≤ 2EX+

n − EX0 .

So supn E|Xn| <∞ is equivalent to supn EX+
n <∞.

Proof. Note that (x− a)+ ≤ x+ + |a|, by upcrossing inequality

EUa,b
n ≤ (|a|+ EX+

n )

b− a

As n ↑ ∞, Ua,b
n ↑ Ua,b the number of upcrossings of [a, b] by the whole sequence,

so if supEX+
n < ∞ then EUa,b < ∞ and hence Ua,b < ∞ a.s. Since the last

conclusion holds for all rational a and b,⋃
a,b∈Q

{lim infXn < a < b < lim supXn}

has probability 0. Thus, lim supXn = lim infXn a.s., and

X∞ := lim
n→∞

Xn .

Fatou’s lemma guarantees E|X∞| ≤ lim inf E|Xn| < ∞, so |X∞| < ∞ a.s. and
hence X∞ is a integrable random variable.

Remark 1.18. To prepare for the proof of Theorem 1.56, we should emphasize
that we have shown that if the number of upcrossings of (a, b) by X = (Xn) is
almost surely finite for all a, b ∈ Q, then the limit of (Xn) almost surely exists in
[−∞,∞].

Corollary 1.26 (Supermartingale Convergence). Let (Xn,Fn)n∈N0
be a super-

martingale. If (Xn) is L1 bounded, i.e.,

sup
n∈N0

E|Xn| <∞
(
⇔ sup

n∈N0

EX−
n <∞

)
,

Then there exists an integrable r.v. X∞ ∈ F∞ so that Xn → X∞ almost surely.
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Exercise 1.5. Let (Xn,Fn)n∈N0
be a non-negative supermartingale with respect

to F, then there exists an integrable r.v. X∞ ∈ F∞ so that Xn → X∞ almost
surely. Moreover, (Xn,Fn; 0 ≤ n ≤ ∞) is a supermartingale.

Example 1.19 (Polya’s urn). Suppose we have an urn with red and green balls.
At time n = 0, we start with r red ball and g green ball. At each positive integer
time we choose a ball at random from the urn (with each ball equally likely to be
chosen), look at the color of the ball, and then put the ball back in with another
c balls of the same color. Let Rn, Gn denote the number of red and green balls
in the urn after the draw at time n so that

R0 = r, G0 = g, Rn +Gn = r + g + nc .

and let
Xn =

Gn

Rn +Gn
=

Gn

r + g + nc
, for n ∈ N0 .

Clearly, X = {Xn} is integrable. We will show that {Xn} is a martingale with
respect to FX . Note that for all n ∈ N0,

E [Xn+1|Fn] = Xn
Gn + 1

r + g + (n+ 1)c
+ [1−Xn]

Gn

r + g + (n+ 1)c

=
Gn + cXn

r + g + nc
=
Xn(r + g + (n+ 1)c) + cXn

r + g + (n+ 1)c
= Xn .

The martingale convergence theorem implies that Xn → X∞ a.s. To compute
the distribution of the limit, we observe

(i) the probability of getting green on the first m draws then red on the next
ℓ = n−m draws is

g

g + r
· g + c

g + r + c
· · · g + (m− 1)c

g + r + (m− 1)c
· r

g + r +mc
· · · r + (ℓ− 1)c

g + r + (n− 1)c

(ii) any other outcome of the first n draws with m green balls drawn and ℓ red
balls drawn has the same probability since the denominator remains the
same and the numerator is permuted.
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Consider the special case c = 1, g = 1, r = 1. It follows from (i) and (ii) that

P (Gn = m+ 1) =

(
n

m

)
m!(n−m)!

(n+ 1)!
=

1

n+ 1
for m = 0, 2, · · · , n .

so we can see that X∞ has a uniform distribution on (0, 1).

If we suppose that c = 1, g = 2, and r = 1, then

P (Gn = m+ 2) =
n!

m!(n−m)!

(m+ 1)!(n−m)!

(n+ 2)!/2
→ 2x

if n→ ∞ and m/n→ x. In general, the distribution of X∞ has density

Γ((g + r)/c)

Γ(g/c)Γ(r/c)
x(g/c)−1(1− x)(r/c)−1

This is the beta distribution with parameters g/c and r/c. Later, we will see that
the limit behavior changes drastically if, in addition to the c balls of the color
chosen, we always add one ball of the opposite color.

1.5 Convergnece in L1

We are now state the main theorems of this section. Since we have already done
all the work in the course of measure theory, the proofs are trivial.

Lemma 1.27 (L1 Convergence). Let (Xn,Fn)n≥0 be a (sub-, super-) martingale.
Then the following are equivalent. (i) (Xn)n≥0 is uniformly integrable. (ii)
(Xn)n≥0 converges almost surely and in L1. (iii) (Xn)n≥0 converges in L1.

Proof. We only show that (i) imples (ii). Uniform integrability implies X is L1

bounded, so the martingale convergence theorem implies that (Xn) converges
almost surely to an integrable r.v. X∞ ∈ F∞, and convergence in L1 follows
from the uniform integrability of X.

Theorem 1.28 (Characterization of UI Martingale). Let (Xn,Fn)n≥0 be a (sub-,
super-)martingale. Then the followings are equivalent.

(i) (Xn)n≥0 is is uniformly integrable.
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(ii) (Xn)n≥0 converges to some X∞ ∈ F∞ a.s. and in L1.

(iii) There exists an integrable r.v. X∞ ∈ F∞ such that (Xn,Fn; 0 ≤ n ≤ ∞) is
a (sub-, super-)martingale with EXn → EX∞.

Remark 1.19. Note that a martingale (Xn,Fn)n≥0 satisfying (iii) if and only if it’s
a Levy meartingale. So this theorem implies that uniformly integrable martingale
and Levy martingale are the same thing !

Remark 1.20. We should emphasize that although we use the notation X∞ in (ii)
and (iii), it doesn’t mean that they are the same random variable. Specifically,
if (Xn,Fn)n≥0 is a (sub-, super-)martingale with Xn → X∞ a.s. and in L1, then
(Xn,Fn; 0 ≤ n ≤ ∞) is a (sub-, super-)martingale with EXn → EX∞. However,
if (Xn,Fn; 0 ≤ n ≤ ∞) is a sub-(super-)martingale with EXn → EX∞. In gen-
eral, we don NOT konw if Xn → X∞ a.s. and in L1, unless (Xn,Fn; 0 ≤ n ≤ ∞)

is a martingale (see Theorem 1.29).

Proof. We have shown that (i) implies (ii) in the preceding lemma.

To show (ii) impleies (iii), as metioned in Remark 1.20, we shall prove that
(Xn,Fn; 0 ≤ n ≤ ∞) is a (sub-, super-)martingale. Fix n ∈ N0. It is sufficient to
show that for all A ∈ Fn,

E(X∞1A) (≥, ≤) = E(Xn1A) .

Observe that for any k ≥ 0, we have E(Xn+k1A) (≥, ≤) = E(Xn1A). Letting
k → ∞, since {Xn} converges to X∞ in L1, so

E(Xn+k1A) → E(X∞1A) ,

and the desired result follows.
We now prove (iii) implies (i). Without loss of generality, we assume that

(Xn,Fn)n≥0 be a submartingale. (Indeed, for the case of martingale, we have al-
ready proved this in Example 1.2.) Firstly we show that (Xn)n≥0 is L1-bounded.
Since (X+

n ,Fn; 0 ≤ n ≤ ∞) is also a submartingale, we have

sup
n≥0

EX+
n ≤ EX+

∞ .
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It follows from Remark 1.17 that (Xn)n≥0 is L1-bounded. Next, we shall show
respectively that (X+

n )n≥0 and (X−
n )n≥0 are uniformly integrable.

We now prove that (X+
n )n≥0 is uniformly integrable. For any λ > 0, (X+

n ,Fn; 0 ≤
n ≤ ∞) is also a submartingale, we have

EX+
n 1{X+

n >λ} = EXn1{Xn>λ} ≤ EX∞1{Xn>λ} .

On the other hand, by Markov inequality,

P(Xn > λ) ≤ EX+
n

λ
≤ EX+

∞
λ

,

so supn≥0 P (|Xn| > λ) converges to zero as λ→ ∞. Hence

sup
n≥0

EX+
n 1{X+

n >λ} ≤ sup
n≥0

EX∞1{Xn>λ} → 0 as λ→ ∞

follows from the absolute continuity of the integral.

We now prove that (X−
n )n≥0 is uniformly integrable. Observe that for each

m < n, we have

EX−
n 1{X−

n >λ} = −EXn1{Xn<−λ} = EXn1{Xn>−λ} − EXn

≤ EX∞1{Xn>−λ} − EXn

= EX∞ − EXn − EX∞1{Xn<−λ} .

Since EXn → EX∞, given any ϵ > 0, we can certainly choose m = mϵ so large
that |EX∞ − EXn| ≤ ϵ holds for every n > mϵ, and by the absolute continuity
of the integral, there exists λϵ > 0 so that for any λ > λϵ,

sup
n≥1

EX∞1{Xn<−λ} < ϵ ; sup
n≤mϵ

EX−
n 1{X−

n >λ} < ϵ .

Consequently, for any λ > λϵ we have:

sup
n≥1

EX−
n 1{X−

n >λ} < 2ϵ

and thus (X−
n )n≥0 is also uniformly integrable.

Warning: the condition EXn → EX∞ in (iii) is necessary! To find a con-
terexample, it suffices to find a a supermartingle (Xn,Fn; 0 ≤ n ≤ ∞) that is not
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uniformly integrable. Note that for any non-negative martingale (Mn,Fn)n≥0,
letting M∞ = 0, then (Mn,Fn; 0 ≤ n ≤ ∞) is a supermartingale (but may not a
martingale). In addition, suppose Mn → M∞ a.s., then (Mn,Fn; 0 ≤ n ≤ ∞) is
uniformly integrable if and only if Mn → M∞ in L1. We already give conterex-
amples about this, see Example 1.17 and Example 1.18.

This following theorem gives the representation of the limit for a Levy’s mar-
tingale.

Theorem 1.29 (Limit of Levy Martingale). Let ξ in L1 and let F = (Fn)n∈N0
be

a filtration. Then {E(ξ|Fn)}n∈N0
is a uiformly integrable martingale with respect

to F, and
E(ξ|Fn) → E(ξ|F∞) a.s. and in L1 .

Proof. We have shown that {E(ξ|Fn)} is a uiformly integrable martingale. So
there exists X∞ ∈ F∞, E(ξ|Fn) → X∞ in L1. It suffices to show that

X∞ = E(ξ|F∞) a.s..

Recall F∞ = σ(∪nFn). Note that A ∈ ∪nFn, by convergence in L1,

E[E(ξ|Fn)1A] → E(X∞1A) ,

and for large n, A ∈ Fn so E[E(ξ|Fn)1A] = E(ξ1A). Hence

E(X∞1A) = E(ξ1A) , for all A ∈ ∪nFn .

Applying the π − λ theorem we get

E(X∞1A) = E(ξ1A) , for all A ∈ F∞ .

An immediate consequence of Theorem 1.29 is:

Corollary 1.30 (Lévy’s 0-1 Law). Let F = (Fn)n∈N0 be a filtration. For A ∈ F∞,
we have

P(A|Fn) → 1A a.s.
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To steal a line from Chung: The reader is urged to ponder over the meaning
of this result and judge for himself whether it is obvious or incredible. We will
now argue for the two points of view.

“It is obvious.” 1A ∈ F∞, and Fn ↑ F∞, so our best guess of 1A given the
information in Fn should approach 1A (the best guess given F∞).

“It is incredible.” Let X1, X2, . . . be independent and suppose A ∈ T , the tail
σ-field. For each n,A is independent of Fn, so P (A|Fn) = P(A). As n → ∞,

the left-hand side converges to 1A a.s., so P(A) = 1A a.s., and it follows that
P(A) ∈ {0, 1}, i.e., we have proved Kolmogorov’s 0-1 law.

The last argument may not show that Lévy’s 0-1 law is “too unusual or
improbable to be possible,”but this and other applications below show that it
is a very useful result.

Corollary 1.31 (Dominated Convergence Theorem). Let F = {Fn}n∈N0 be a
filtration. Let {Xn}n∈N0 be a sequence of r.v.’s NOT need to be adapted to F and
Xn → X∞ a.s. If {Xn} is domainted by some Y ∈ L1, i.e., |Xn| ≤ Y for each
n, then

E (Xn|Fn) → E (X∞|F∞) a.s..

Proof. Since we have shown that E(X∞|Fn)−E(X∞|F∞) → 0 a.s., it suffices to
show that

E(Xn|Fn)− E(X∞|Fn) → 0 a.s..

Let Ym := supn≥n |Xn − X∞| ≤ 2Y for m ≥ 1. Then, clearly, for any fixed m

and n ≥ m,
E(|Xn −X∞| | Fn) ≤ E(Ym|Fn) .

Letting n→ ∞, by Theorem 1.29 we get

lim sup
n→∞

E(|Xn −X∞| | Fn) ≤ E(Ym|F∞) .

Leting m → ∞ now, the desired result follows from the domainted convergence
theorem for conditional expectation.
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Example 1.20. Let Z1, Z2, . . . be i.i.d. with E |Zi| < ∞, let θ be an indepen-
dent r.v. with finite mean, and let Yi = Zi + θ. If Zi is normal(0, 1) then in
statistical terms we have a sample from a normal population with variance 1
and unknown mean. The distribution of θ is called the prior distribution, and
P (θ ∈ ·|Y1, . . . , Yn) is called the posterior distribution after n observations. Let
F be the filtration generated by (Yn). By SLLN we can see that θ ∈ F∞, hence
it follows from Theorem 1.29 that

E (θ|Y1, . . . , Yn) → θ a.s..

Example 1.21 (Radon–Nikodym Theorem). Let (Ω,F ,P) be a probability
space, µ be a finite measure on F and absolutely continuous to P. Suppose that F
is countably generated, i.e., there is a sequence of sets {An} so that F = σ ({An}).
For a concrete example, consider Ω = [0, 1), F = B(R) and {An}= all the open
intervals in (0, 1) with rational endpoints, P=Lebesgue measure. We construct
a filtration F = (Fn)n∈N by letting Fn := σ ({A1, . . . , An}) . Evidently, Fn is a
finite family, for all n ∈ N. More precisely, there exists a finite subset Cn ⊂ Fn is
pairwise disjoint satisfying that, for any A ∈ Fn,

A =
⋃

C∈Cn,C⊂A

C .

In other words, Cn decomposes Fn into its “atoms”. Finally, define a stochastic
process X = (Xn)n∈N by

Xn :=
∑

C∈Cn,P(C)>0

µ(C)

P(C)
1C .

One can easily check that Xn is exactly dµn/dPn, and (Xn,Fn) is a uniformly
integrable martingale. Hence, by the same arguement as Theorem 1.29,

dµ
dP exists, and = lim

n→∞
Xn a.s..

Note that for this proof we did not presume the existence of conditional
expectations (rather we constructed them explicitly for finite σ-algebras); that
is, we did not resort to the Radon–Nikodym theorem in a hidden way.
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1.6 Convergence in Lp (p > 1)

A Doob’s Inequalities

With Kolmogorov’s maximal inequality, we became acquainted with an inequal-
ity that bounds the probability of large values of the maximum of a square inte-
grable process with independent centered increments. Here we want to improve
this inequality in two directions. On the one hand, we replace the independent
increments by the assumption that the process of partial sums is a martingale.
On the other hand, we can manage with less than second moments; alternatively,
we can get better bounds if we have higher moments.

Let X = (Xn)n∈N0
be a real-valued stochastic process. Then the running

maximum of the process X, denoted by X∗, is given by

X∗
n = max

0≤k≤n
Xk for each n ≥ 0 .

Then the running maximum of |X|, is

|X|∗n = max
0≤k≤n

|Xk| for each n ≥ 0 .

Theorem 1.32 (Doob’s Maximal Inequality). Let (Xn,Fn)n∈N0
be a submartin-

gale. Then for any n ∈ N0 and λ > 0,

λP (X∗
n ≥ λ) ≤ EXn1{X∗

n≥λ} ≤ EX+
n .

Proof. The second inequality is trivial. For the first one, let

τ = inf{k ∈ N0 : Xk ≥ λ} .

Then for each n ∈ N, {X∗
n ≥ λ} = {τ ≤ n}. Evidently, τ ∧ n is a bounded

stopping time, by Theorem 1.9, and note that on {τ ≤ n}, Xτ ≥ λ,

EXn ≥ EXτ∧n = EXτ1{τ≤n} + EXn1{τ>n}

≥ λP(τ ≤ n) + EXn1{τ>n} .

Thus we have

λP(τ ≤ n) ≤ EXn − EXn1{τ>n} = EXn1{τ≤n} .

We have completed the proof.
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Example 1.22 (Random Walks). Let Sn = ξ1 + · · · + ξn where the {ξm} are
independent and have Eξm = 0, and Eξ2m < ∞. {Sn} is a martingale and {S2

n}
is a submartingale. If we let λ = a2 and apply Doob’s inequality to {S2

n}, we get
Kolmogorov’s maximal inequality:

P
(

max
1≤m≤n

|Sm| ≥ a

)
≤ ES2

n

a2
.

Exercise 1.6 (Doob’s inequality for supermartingale). Let (Yn,Fn)n≥0 be a super-
martingale. Then for each n ∈ N0 and λ > 0,

λP(Y ∗
n ≥ λ) ≤ EY0 − EYn1{Y ∗

n<λ} ≤ EY −
n + EY0 .

Exercise 1.7 (Doob’s Inequality II). Let X = (Xn)n≥0 be a submartingale with
respect to (Fn)n≥0. Then for all λ > 0,

λP ((−X)∗n ≥ λ) = λP
(

min
k≤n

Xk ≤ −λ
)

≤ EX+
n − EX0 ,

and thus
λP (|X|∗n ≥ λ) ≤ 2EX+

n − EX0 ≤ 2E|Xn|+ E|X0| .

Theorem 1.33 (Doob’s Lp Maximal Inequality). Let {Xn,Fn}n∈N0 be a non-
negative submartingale. Then for any n ∈ N0 and p > 1,

‖X∗
n‖p ≤ p

p− 1
‖Xn‖p .

Remark 1.21. We suppose that X is non-negetive to guarantee that X∗
n is non-

negetive, in order to use the following results. As we all know, for any non-
negative random variable ξ, we have

E ξp = p

∫ ∞

0

tp−1 P(ξ ≥ t)dt .

Proof. Step 1. By Doob’s inequality and Funibi’s theorem,

E |X∗
n|

p
= p

∫ ∞

0

tp−1P (X∗
n ≥ t)dt ≤ p

∫ ∞

0

tp−2 dt
∫
Ω

Xn1{X∗
n≥t} dP

= p

∫
Ω

Xn dP
∫ X∗

n

0

tp−2 dt = p

p− 1
E
[
Xn (X

∗
n)

p−1
]
.
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Hence, by Hölder’s inequality,

E |X∗
n|

p ≤ p

p− 1
‖Xn‖p [E (X∗

n)
p
]
1/q

,

where 1
p + 1

q = 1. Suppose now ‖X∗
n‖p <∞, then we get the desired result:

‖X∗
n‖p ≤ p

p− 1
‖Xn‖p .

Step 2. However, if ‖X∗
n‖p <∞ is not satisfied, we consider X∗

n ∧K, where
K is a positive integer. Obeserve that

P (X∗
n ∧K ≥ t) = P (X∗

n ≥ t) , for t ∈ [0,K] ,

using the same arguement in Step 1, then we get

‖X∗
n ∧K‖p ≤ p

p− 1
‖Xn‖p .

Since K is arbitary, letting K ↑ ∞ we have

‖X∗
n‖p ≤ p

p− 1
‖Xn‖p .

Remark 1.22. If {Xn} is a martingale, then {|Xn|} is a non-negative submartin-
gale. Applying Lp maximum inequality, we get :

‖ |X|∗n ‖p ≤ p

p− 1
‖Xn‖p .

If {Xn} is a submartingale , {X+
n } is a non-negative submartingale, so∥∥ (X+)∗n
∥∥
p
≤ p

p− 1

∥∥X+
n

∥∥
p
.

Example 1.23. There is no L1 maximal inequality.

Again, the counterexample is provided by Example 1.18. Let {Sn} be a simple
random walk starting from S0 = 1. For each j ∈ N0, let

τj = inf {n : Sn = j} ,
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be the first hitting time to state j. Define Xn = Sτ0∧n. {Xn} is a non-negative
martingale implies EXn = EX0 = ES0 = 1 for all n. Using hitting probabilities
for simple random walk, for m ≥ 1,

P(τm < τ0) = P
(

max
n∈N0

Xn ≥ m

)
=

1

m
.

So

E
(
max
n

Xn

)
=

∞∑
m=1

P
(
max
n

Xn ≥ m
)
= ∞.

Since X∗
n ↑ maxnXn, the monotone convergence theorem implies that

‖X∗
n‖1 = EX∗

n ↑ ∞ .

B Lp Convergnece Theorem

As we konw, in general, for a stochastic process X = (|Xn|p)n≥0 to be uniformly
integrable it is not enough that (Xn)n≥0 be Lp-bounded, where p > 1. However,
if X is a martingale or a nonnegative submartingale, then Doob’s inequality
implies that the statements are equivalent. In particular, in this case, almost
sure convergence implies convergence in Lp.

Lemma 1.34. Let {Xn,Fn}n∈N0 be a non-negative submartingale, let p > 1. If
{Xn} is Lp-bounded, i.e.,

sup
n∈N0

‖Xn‖p <∞ ,

then {Xn} converges to a random variable X∞ ∈ Lp(F∞) a.s. and in Lp.

Proof. Since {Xn} is Lp bounded, it is L1 bounded, by martingale convergence
theorem, there exists an integrable X∞ ∈ F∞ so that Xn → X∞ a.s.. It suffices
to show that {Xp

n} is uniformly integrable. By Lp maximum inequality, we have

‖X∗
n‖p ≤ p

p− 1
‖Xn‖p

Letting n→ ∞, since X∗
n ↑ supnXn, we have

E sup
n∈N0

Xp
n <∞.
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Observe that
Xp

n ≤ sup
n∈N0

Xp
n for all n .

Thus {Xp
n} is uniformly integrable, which implies the conclusion.

Theorem 1.35 (Lp Convergence). Let {Xn,Fn}n∈N0 be a martingale, let p > 1.
Then the following statements are equivalent.

(i) {Xn} is Lp bounded, i.e., supn∈N0
‖Xn‖p <∞.

(ii) {Xn} converges a random variable X∞ ∈ Lp(F∞) a.s. and in Lp.

(iii) There exists a random variable X∞ ∈ Lp(F∞) such that (Xn,Fn; 0 ≤ n ≤
∞) is a martingale.

Proof. (i) ⇒ (ii). Since {Xn} is Lp bounded, it is L1 bounded, by martingale
convergence theorem, there exists an integrable X∞ ∈ F∞ so that Xn → X∞

a.s.. It fuffices to show that {|Xn|p} is uniformly integrable. Note that {|Xn|} is
a non-negative submartingale, by Lemma 1.34 , the desired result follows.

(ii) ⇒ (iii). Fix n ∈ N0. It is sufficient to show that for all A ∈ Fn,

E(Xn1A) = E(X∞1A) .

However, for any k ≥ 0, E(Xn1A) = E(Xn+k1A). Letting k → ∞, since {Xn}
converges to X∞ in Lp, of course in L1, so

E(Xn+k1A) → E(X∞1A) ,

and the desired result follows.

(iii) ⇒ (i). Since (Xn,Fn; 0 ≤ n ≤ ∞) is a martingale, by Jensen’s inequality
we have

|Xn|p ≤ E (|X∞|p|Fn) for all n .

Thus supn∈N0
E|Xp

n| ≤ E|Xp
∞| <∞.

Corollary 1.36. Let ξ ∈ Lp for p > 1. Let F = (Fn)n≥0 be a filtration. Then

E (ξ|Fn) → E (ξ|F∞) , a.s. and in Lp .
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Example 1.24. Let (ξn)n∈N be non-negative independent random variables with
Eξn = 1 for all n. Set X0 = 1, F0 = {∅,Ω} and

Xn =

n∏
j=1

ξj , Fn = σ(ξ1, · · · , ξn) for n ∈ N .

Then (Xn,Fn) is a non-negative martingale. By martingale convergence theorem,
{Xn} converges a.s. to an integrable r.v. X∞ ∈ F∞. Note that

∞∑
n=1

log ξn > −∞

is a tail event, so the Kolmogorov 0-1 law implies P(X∞ = 0) ∈ {0, 1}. The next
result gives a concrete criterion for which of the two alternatives occurs.

Let aj = E
√
ξj for j ≥ 1. Clearly, aj > 0, and by Hölder inequality,

aj = E
√
ξj ≤

√
Eξj = 1 .

Then we have the following criterion.

(i) If Πjaj = 0, then X∞ = 0 a.s.

(ii) If Πjaj > 0, then Xn converges to X∞ in L1, paticularly, E [X∞] = 1, hence
we have X∞ > 0 a.s..

Proof. Define

Y0 = 1, Yn =

n∏
j=1

√
ξj

aj
, for n ∈ N .

Then Y = (Yn) is a non-negative martingale with respect to {Fn}, and the
relation with X is

Y 2
n =

Xn

Πn
j=1aj

, E
[
Y 2
n

]
=

1

Πn
j=1aj

, for n ∈ N .

If Πjaj = 0, since (Yn) is a non-negative martingale, it converges a.s. to some
limit Y∞ ∈ L1. Therefore, almost surely,

Xn = Y 2
n ×Πn

j=1aj → Y 2
∞ × 0 = 0 = X∞ .
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If Πjaj > 0, note that

sup
n

EY 2
n ≤ 1

Π∞
j=1aj

<∞ .

By Lemma 1.34 , we deduce that supn∈N Y
2
n ∈ L1. Note that for all n,

Xn = Y 2
nΠ

n
j=1aj ≤ sup

n∈N
Y 2
n .

So {Xn} is uniformly integrable.

Futher reading∗ We will state the famous law of the iterated logarithm (LIT).
The essential tool of the proof is Borel-Cantelli lemma, based on an estimation
of probability using Doob’s inequality. Indeed, the proof basically the same as
the LIT for Brownian motion.

Theorem 1.37 (Law of the Iterated Logarithm). Let (ξn)n≥1 be i.i.d. Gaussian
random variable with zero mean and unit variance. Define Sn =

∑n
j=1 ξj . Then,

the law of the iterated logarithm claim that

lim sup
n→∞

Sn√
2n log logn

= 1 a.s..

Clearly Sn ∼ N(0, n). We use the esitimation of the tail normal probability:
For x > 0,

(
x−1 − x−3

)
exp

(
−x2/2

)
≤
∫ ∞

x

exp
(
−y2/2

)
dy ≤ x−1 exp

(
−x2/2

)
.

So, for any positive function f ,

P
(
Sn >

√
nf(n)

)
∼ (2π)−1/2f(n)−1/2 exp(−f(n)/2) .

The last result implies that if ϵ > 0, then

∞∑
n=1

P
(
Sn >

√
nf(n)

){ <∞ when f(n) = (2 + ϵ) logn
= ∞ when f(n) = (2− ϵ) logn
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and hence by the Borel-Cantelli lemma that

lim sup
n→∞

Sn√
2n logn

≤ 1 a.s..

Next, we will try to imporve this method.

Proof of Theorem 1.37. Define φ(n) =
√
2n log logn. It is sufficient to show that,

for any ϵ > 0, we have almost surely,

lim sup
n→∞

Sn

φ(n)
≤ 1 + ϵ, lim sup

n→∞

Sn

φ(n)
≥ 1− ϵ .

Upper bound. Since (Sn)n≥0 is a martingale, and for θ > 0, the function x 7→ eθx

is convex, we have
(
eθSn

)
is a submartingale. By Doob’s inequality, we have that,

for any c > 0

P
(

max
0≤k≤n

Sk ≥ c

)
= P

(
max

0≤k≤n
eθSk ≥ eθc

)
≤ e−θcE

[
eθSn

]
= e−θc+θ2 n

2 .

Pick θ = c/n, we have that, for any c > 0

P
(

max
0≤k≤n

Sk ≥ c

)
≤ e−

c2

2n .

Thus,
P
(

max
0≤k≤n

Sk ≥ (1 + ϵ)φ(n)

)
≤ (logn)−(1+ϵ)2 .

In order to use the Borel-Cantelli lemma, fix some q > 1, then we have

P
(

max
0≤k≤qm

Sk ≥ (1 + ϵ)φ (qm)

)
≤ (m log q)−(1+ϵ)2 .

Thus
∞∑

m=1

P
(

max
k≤qm

Sk ≥ (1 + ϵ)φ (qm)

)
<∞ .

By Borel-Cantelli lemma, we have almost surely,

max
k≤qm

Sk ≤ (1 + ϵ)φ (qm) , for m large enough. (1.13)
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On this event, for qm ≤ n ≤ qm+1, we have

Sn ≤ max
k≤qm+1

Sk ≤ (1 + ϵ)φ
(
qm+1

)
≤ (1 + ϵ)φ(qn) .

Therefore, almost surely,

lim sup
n→∞

Sn

φ(n)
≤ (1 + ϵ) lim

n→∞

φ(qn)

φ(n)
= (1 + ϵ)

√
q .

Let q ↓ 1, we have almost surely,

lim sup
n→∞

Sn

φ(n)
≤ 1 + ϵ .

Lower bound. Note that Sn is Gaussian with mean zero and variance n, thus

P (Sn ≥ (1− ϵ)φ(n)) =

∫
(1−ϵ)

√
2 log log n

1

2π
e−y2/2 dy .

∼ (2π)−1/2(1− ϵ)−1(2 log logn)−1/2(logn)−(1−ϵ)2

Fix some q > 1, but this time q will be (large) integer. Since to get independent
events, we will we look at

P
(
S
(
qm+1

)
− S (qm) ≥ (1− ϵ)φ

(
qm+1 − qm

))
∼ (2π)−1/2(1− ϵ)−1(2 log(m log q))−1/2(m log q)−(1−ϵ)2 .

Therefore,
∞∑

m=1

P
(
S
(
qm+1

)
− S (qm) ≥ (1− ϵ)φ

(
qm+1 − qm

))
= ∞ .

By Borel-Cantelli Lemma, we have almost surely

S
(
qm+1

)
− S (qm) ≥ (1− ϵ)φ

(
qm+1 − qm

)
, i.o..

By (1.13), we have almost surely

S (qm) ≥ −(1 + ϵ)φ (qm) , for m large.

Combining these two, we have almost surely,

S
(
qm+1

)
≥ (1− ϵ)φ

(
qm+1 − qm

)
− (1 + ϵ)φ (qm) , i.o..
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Therefore, almost surely

lim sup
n→∞

S (qm)

φ (qm)
≥
√
q − 1

q
(1− ϵ)− 1 + ϵ

√
q
.

Let q → ∞, we have almost surely,

lim sup
n→∞

S (qm)

φ (qm)
≥ 1− ϵ .

1.7 Sets of Convergence
Let (Xn,Fn)n≥0 be a adapted real-valued stochastic process. Denote by

{Xn →}

the set of sample points for which limnXn exists and is finite. Let us write A ⊂ B

a.s. when P (1A ≤ 1B) = 1, and A = B a.s. if P(A∆B) = 0.

If (Xn,Fn)n≥0 is a submartingale and supn EX+
n < ∞, then according to

Martingale convergence theorem, we have

{Xn →} = Ω a.s..

In this section, let us consider the structure of sets {Xn →} of convergence for
submartingales when the hypothesis supn EX+

n <∞ is not satisfied.

However, we need some other consitions. In the first resule for martingale, we
will assume that the martingale difference sequence (∆Xn)n≥1 is domainted by
a integrable r.v., in other words,

E sup
n∈N

|∆Xn| <∞ , (1.14)

It’s evdently that (1.14) is satisfied if there exists a constant C so that

|∆Xn| ≤ C <∞ , for all n ≥ 1 a.s..

Our first result shows that martingales with bounded increments either con-
verge or oscillate between ∞ and −∞.
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Theorem 1.38. Let {Xn,Fn}n≥0 be a martingale. If {∆Xn}n≥1 is domainted
by an integrable r.v., i.e., (1.14) holds, then{

inf
n
Xn = −∞, supXn = +∞

}
∪ {Xn →} = Ω a.s..

Proof. Since {−Xn,Fn}n≥0 is also a martingale, it suffices to show

{supXn <∞} = {Xn →} a.s..

Then we apply the conclution to {−Xn}, and get

{infXn > −∞} = {Xn →} a.s..

which implies the desired result.

The inclusion {Xn →} ⊂ {supXn <∞} is evident. To establish the opposite
inclusion, take some k ∈ N, let

τk = inf {n ∈ N0 : Xn ≥ k} . (1.15)

we consider the stopped process Xτk = {Xτk∧n}, which is a F-submartingale.
Note that

Xτk∧n ≤ |X0|+ k +∆Xτk1{1≤τk<∞} for all n a.s.. (1.16)

Since X satisfies (1.14), supn EX
+
τk∧n is finite. Applying Theorem 1.25, the

F-submartingale Xτk = {Xτk∧n} converges. Note that on {τk = ∞} we have
Xτk∧n = Xn, so

{τk = ∞} ⊂ {Xn →} a.s..

Since k is arbitary, we have⋃
k∈N

{τk = ∞} = {supXn <∞} ⊂ {Xn →} a.s..

We have completed the proof.

A For Submartingales

From the proof above, we can see that, the main result

{supXn <∞} = {Xn →} a.s.

71



holds since the stopped process Xτk converges for each k ∈ N. To guarantee this,
we made the conditions of convergence theorem for submartingales satisfied, by
contorlling the expectation of the RHS in (1.16).

Firstly, we only need the condition that X is a submartingale to guarantee
that Xτk , k ∈ N are submartingales. Secondly, to ensure the convergence for
these submartingles,

E
[
∆Xτk1{1≤τk<∞}

]
<∞ , for any k ∈ N . (1.17)

is enough. Clearly, (1.14) implies (1.17). Thus we have,

Lemma 1.39. If {Xn,Fn}n∈N0
is a submartingale satisfying (1.17), then

{supXn <∞} = {Xn →} a.s..

To give a more comprehensive description of the set of convergence of sub-
martingales, we shall study the increasing process associated to the submartin-
gales.

Theorem 1.40. Let (Xn,Fn)n∈N0
be a submartingale and

Xn =Mn +An for n ≥ 0

its Doob’s decomposition. Since A is increasing, A∞ := limnAn is well-defined.
Then the following propositions holds.

(i) If X is a nonnegative submartingale, then

{A∞ <∞} ⊂ {Xn →} ⊂ {supXn <∞} a.s..

(ii) If X satisfies (1.17) then

{supXn <∞} = {Xn →} ⊂ {A∞ <∞} a.s..

(iii) If X is a nonnegative submartingale and X satisfies (1.17) then

{supXn <∞} = {Xn →} = {A∞ <∞} a.s..
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Proof. (i). The second inclusion is obvious, to establish the first inclusion, we
introduce the times

σk = inf {n ∈ N0 : An+1 > k}

where k ∈ N. Then Aσk∧n ≤ k for each n ∈ N0. Since A is predictable, σk
is a stopping time to F. Therefore, the stopped process Xσk = {Xσk∧n} is a
non-negative F-submartingale, and Mσk = {Mσk∧n} is a F-martingale,

EXσk∧n = EM0 + EAσk∧n ≤ EX0 + k , for all n . (1.18)

In other words, Xσk is L1 bounded. By the martingale convergence theorem,
Xσk converges almost surely. On {σk = ∞}, we have Xn = Xσk∧n for all n, so

{A∞ ≤ k} = {σk = ∞} ⊂ {Xn →} a.s..

Therefore
{A∞ <∞} =

⋃
k∈N

{A∞ ≤ k} ⊂ {Xn →} .

(ii). The first equation follows from Lemma 1.39. To show the second, note
that, for τk defined in (1.15) and fixed n ∈ N,

EAτk∧n = EXτk∧n − EX0 ≤ 2E|X0|+ k + E
[
∆Xτk1{1≤τk<∞}

]
,

and letting n→ ∞, by monotone convergence theorem,

EAτk <∞ .

Hence {τk = ∞} ⊂ {A∞ <∞} , a.s. and we obtain the required conclusion since
∪k {τk = ∞} = {supXn <∞}.

(iii). This is an immediate consequence of (i) and (ii).

Remark 1.23. The hypothesis in (i) that X is non-negative can be replaced by
the hypothesis E [supnX

−
n ] < ∞, since we only use non-negativity in (1.18) to

deduce that Xσk = {Xσk∧n} is convergent.
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Example 1.25. Let (ξn)n≥1 be a non-negative integrable process adapted to
(Fn)n∈N. Set S0 = 0 and F0 = {∅,Ω}, Sn = ξ1 + · · · + ξn for n ∈ N. Clearly,
(Sn)n∈N0 is a non-negative F-submartingale. Then by Doob’s decomposition and
Theorem 1.40, { ∞∑

n=1

E (ξn|Fn−1) <∞

}
⊂

{ ∞∑
n=1

ξn <∞

}
a.s..

and if, in addition, E [supn ξn] <∞, then{ ∞∑
n=1

E (ξn|Fn−1) <∞

}
=

{ ∞∑
n=1

ξn <∞

}
a.s..

Now let ξn = 1Bn , we get the following theorem, which genelize the B-C lemma.

Corollary 1.41 (Second Borel-Cantelli Lemma II). Let F = {Fn}n∈N0
be a

filtration. {Bn}n∈N is a sequence of events with Bn ∈ Fn. Then{ ∞∑
n=1

P (Bn|Fn−1) = ∞

}
= {Bn i.o. } a.s..

B For Square-Integrable Martingales

Let’s see an example first.

Example 1.26 (Kolmogorov’s two-series theorem). Let ξ1, ξ2, . . . be a sequence
of independent r.v.’s with Eξn = 0 and Eξ2n <∞. By the Kolmogorov’s two-series
theorem, which we learned in the courese of probability theory, the series

∑
i ξi

converges a.s. if and only if
∑

i Eξ2i < ∞. Note that the sequence S = (Sn)n≥0

with Sn =
∑n

i=1 ξi is a square-integrable martingale with respect to the filtration
generated by (ξn). The quadratic variation process is given by 〈S〉n =

∑n
i=1 Eξ2i ,

and the theorem just stated can be interpreted as follows:

{〈S〉∞ <∞} = {Sn →} a.s.,

where 〈S〉∞ = limn〈S〉n.
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Thus we try to genelize the result to all the square-integrable martingales.

Theorem 1.42. Let (Xn,Fn)n∈N0
be a square-integrable martingale. Let 〈X〉 be

the quadratic variation process of X. Then

{〈X〉∞ <∞} ⊂ {Xn →} a.s..

If, in addition, E
(
supn |∆Xn|2

)
<∞, then

{〈X〉∞ <∞} = {Xn →} a.s..

Proof. The proof of the first proposition depends on the observation

{Xn →} =
{
X2

n → , (Xn + 1)
2 →

}
.

Thus, consider the following two F-submartingales, X2 =
(
X2

n

)
n≥0

and (X +

1)2 =
(
(Xn+1)2

)
n≥0

. We notice that the quadratic variation process of (X+1)2,
coincides with X2. Applying Theorem 1.40, we have

{〈X〉∞ <∞} ⊂
{
X2

n → , (Xn + 1)
2 →

}
= {Xn →} .

If in addition, E supn |∆Xn|2 < ∞, by Theorem 1.40 (iii), it is sufficient to
show that X2 satisfies (1.17). Let τk = inf

{
n ≥ 0 : X2

n > k
}
. Then, on the set

{1 ≤ τk <∞},∣∣∆X2
τk

∣∣ = ∣∣X2
τk

−X2
τk−1

∣∣ = |Xτk +Xτk−1| · |Xτk −Xτk−1|

≤ |Xτk −Xτk−1|2 + 2 |Xτk−1| · |Xτk −Xτk−1|

≤ (∆Xτk)
2
+ 2k1/2 |∆Xτk | ,

whence

E
∣∣∆X2

τk

∣∣ 1{τk<∞} ≤ E sup |∆Xn|2 + 2k1/2E sup |∆Xn|

≤ E sup |∆Xn|2 + 2

√
kE sup |∆Xn|2 <∞ .

This completes the proof of the theorem.

Exercise 1.8. Suppose X = (Xn)n∈N0 is a square-integrable F-martingale.
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(i) Show that E
(
sup |Xn|2

)
≤ 4E〈X〉∞ by using Doob’s Lp maximum inequal-

ity.

(ii) By using (i) and stopping X to show that {〈X〉∞ <∞} ⊂ {Xn →}.

(iii) Show that E (supn |Xn|) ≤ 3E〈X〉1/2∞ by using Doob’s inequality and stop-
ping X. This ia a slightly better result than (i).

As an illustration of Theorem 1.42, we present the following result, which
can be considered as a kind of the law of large numbers for square-integrable
martingales.

Theorem 1.43. Let (Xn,Fn)n∈N0
be a square-integrable martingale. Let f ≥ 1

be a increasing function on (0,∞) with
∫∞
0
f(t)−2 dt <∞. Then

Xn

f (〈X〉n)
→ 0 on {〈X〉∞ = ∞} a.s..

Proof. Evidently, f(t) → ∞ as t→ ∞, so

f (〈X〉n) → ∞ on {〈X〉∞ = ∞} a.s..

By Kronecker’s lemma, it suffices to show that
∞∑

n=1

∆Xn

f (〈X〉n)
<∞ on {〈X〉∞ = ∞} a.s..

Let Hn = f (〈X〉n)−1 for n ≥ 1. Then H is locally bounded and predictable, so
H ·X is a martingale, given by

(H ·X)n =

n∑
i=1

∆Xi

f (〈X〉i)
, for n ≥ 1 .

Clearly, H · X is a square-integrable F-martingale, and let 〈H · X〉 be it’s the
quadratic process, then

〈H ·X〉n =

n∑
i=1

E[|∆(H ·X)i|2|Fi−1]

=

n∑
i=1

E(|∆Xi|2|Fi−1)

f (〈X〉i)2

=

n∑
i=1

∆〈X〉i
f (〈X〉i)2

.
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Our hypotheses on f imply that

〈H ·X〉∞ =

∞∑
n=1

∆〈X〉n
f (〈X〉n)2

≤
∞∑

n=1

∫
[⟨X⟩n−1,⟨X⟩n)

f(t)−2dt <∞ a.s..

By Theorem 1.42, we have result:
∞∑

n=1

∆Xn

f (〈X〉n)
<∞ a.s..

Since only on {〈X〉∞ = ∞}, we have f (〈X〉n) ↑ ∞, in which case can we use the
Kronecker’s lemma, so we get

Xn

f (〈X〉n)
→ 0 on {〈X〉∞ = ∞} a.s..

Example 1.27 (Rate of Convergence in SLLN). Let ξ1, ξ2, . . . be i.i.d with Eξ1 =

µ and Eξ21 = σ2 > 0. Let (Fn)n∈N0 be the filtration generated by ξ1, ξ2, · · · , let
Sn =

∑n
i=1 ξi for n ≥ 1 and S0 = 0. Then (Sn−nµ,Fn)n≥0 is a square integrable

F-martingale with quadrativ variation process (nσ2)n≥0.

Given ϵ > 0, set f(t) =
(
t log1+2ϵ t

)1/2 ∨ 1 for t > 0. Then f satisfies the
hypotheses of Theorem 1.43. Clearly, nσ2 → ∞,

Sn − nµ

n
1
2 log

1
2+ϵ n

→ 0 a.s..

Corollary 1.44 (Second Borel-Cantelli Lemma, III). Suppose that (Bn)n≥1 is
adapted to F = (Fn)n≥0. Let pn := P(Bn|Fn−1) for all n ≥ 1, then∑n

m=1 1Bm∑n
m=1 pm

→ 1 a.s. on
{∑

m

pm = ∞
}
.

Proof. Observe that∑n
m=1 1B(m)∑n
m=1 pm

− 1 =

∑n
m=1 1B(m) − pm∑n

m=1 pm
,

and (1Bm
− pm)m≥0 is a martingale difference with respect to F. Thus we can

define a martingale X = (Xn)n∈N0 , so that∑n
m=1 1B(m)∑n
m=1 pm

− 1 =
Xn∑n

m=1 pm
.
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Evidently, X is square integrable with quadratic variation

〈X〉n =

n∑
m=1

E
[
(∆Xm)

2 |Fm−1

]
=

n∑
m=1

E
[
(1Bm

− pm)
2 |Fm−1

]
=

n∑
m=1

pm − p2m .

On {〈X〉∞ <∞}, (Xn) converges almost surely by Theorem 1.42, so

Xn∑n
m=1 pm

→ 0 a.s. on {〈X〉∞ <∞} ∩
{∑

m

pm = ∞
}
.

Apply Theorem 1.43 with f(t) = t ∨ 1, we get

Xn∑n
m=1 pm

→ 0 a.s. on {〈X〉∞ = ∞} .

and the desired conclusion follows from {〈X〉∞ = ∞} ⊂ {
∑

m pm = ∞}.

Example 1.28 (Bernard Friedman’s Urn). Consider a variant of Polya’s urn in
which we add a balls of the color drawn and b balls of the opposite color where
a ≥ 0 and b > 0. We will show that if we start with g green balls and r red balls,
where g, r > 0, then the fraction of green balls

gn → 1

2
.

Let Gn and Rn be the number of green and red balls after the n th draw is
completed. Let Bn be the event that the n th ball drawn is green, and let Dn be
the number of green balls drawn in the first n draws. It follows from Theorem
1.44 that

Dn/

n∑
m=1

gm−1 → 1 a.s. on
∞∑

m=1

gm−1 = ∞ (⋆)

which always holds since gm ≥ g/(g+ r+ (a+ b)m). At this point, the argument
breaks into three cases.

Case 1, a = b = c. In this case, the result is trivial since we always add c

balls of each color.
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Case 2, a > b. We begin with the observation

gn+1 =
Gn+1

Gn+1 +Rn+1
=
g + aDn + b (n−Dn)

g + r + n(a+ b)
(∗)

If lim sup gn ≤ x then (⋆) implies lim supDn/n ≤ x and (since a > b)

lim sup
n→∞

gn+1 ≤ ax+ b(1− x)

a+ b
=
b+ (a− b)x

a+ b

The right-hand side is a linear function with slope < 1 and fixed point at 1/2

so starting with the trivial upper bound x = 1 and iterating we conclude that
limsup gn ≤ 1/2. Interchanging the roles of red and green shows lim inf gn ≥ 1/2

and the result follows.

Case 3, a < b. The result is easier to believe in this case since we are adding
more balls of the type not drawn but is a little harder to prove. The trouble is
that when b > a and Dn ≤ xn, the right-hand side of (∗) is maximized by taking
Dn = 0, so we need to also use the fact that if rn is fraction of red balls, then

rn+1 =
Rn+1

Gn+1 +Rn+1
=
r + bDn + a (n−Dn)

g + r + n(a+ b)

Combining this with the formula for gn+1, it follows that if lim sup gn ≤ x and
lim sup rn ≤ y then

lim sup
n→∞

gn ≤ a(1− y) + by

a+ b
=
a+ (b− a)y

a+ b

lim sup
n→∞

rn ≤ bx+ a(1− x)

a+ b
=
a+ (b− a)x

a+ b

Starting with the trivial bounds x = 1, y = 1 and iterating (observe the two
upper bounds are always the same), we conclude as in Case 2 that both limsups
are ≤ 1/2.

C For Square-Integrable Submartingales with Bounded In-
crements

We shall let (Xn,Fn)n∈N0
is a square-integrable submartingale with bounded

increments. Clearly, under the condition (∆Xn) is bounded, X0 ∈ L2 implies
(Xn) is square-integrable. Without loss of generality, we assume that X0 = 0.
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Theorem 1.45. Let (Xn,Fn)n∈N0
be a submartingale with X0 = 0 and bounded

increments, i.e., |∆Xn| ≤ C. Let X =M +A be its Doob decomposition. Then

{〈M〉∞ +A∞ <∞} = {Xn →} a.s.,

or, equivalently,{ ∞∑
n=1

E
[
∆Xn + (∆Xn)

2 |Fn−1

]
<∞

}
= {Xn →} a.s..

Proof. For n ≥ 1, we have

An =

n∑
k=1

E (∆Xk|Fk−1) , Mn =

n∑
k=1

∆Xk − E (∆Xk|Fk−1) .

and
〈M〉n =

n∑
k=1

E
[
{∆Xk − E (∆Xk|Fk−1)}2|Fk−1

]
=

n∑
k=1

E
[
(∆Xk)

2|Fk−1

]
− E(∆Xk|Fk−1)

2 .

Note that Mn is a square-integrable martingale with bounded increments, by
Theorem 1.42 we have

{〈M〉∞ <∞} = {Mn →} a.s..

Since An is a increasing process, by Theorem 1.40, we have

{Xn →} ⊂ {A∞ <∞} = {An →} a.s..

Thus
{〈M〉∞ +A∞ <∞} = {Xn →} a.s..

Moreover, the convergence of An imples the convergences of the series∑
k

E(∆Xk|Fk−1)
2 .

and the desired result follows.
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Kolmogorov’s three-series theorem gives a necessary and sufficient condition
for the convergence, with probability 1, of a series

∑
ξn of independent random

variables. The following theorem describes sets of convergence of
∑
ξn without

the assumption that the random variables ξ1, ξ2, . . . are independent.

Exercise 1.9 (Kolmogorov’s Three-Series Theorem). Let (ξn,Fn)n≥1 be an adapted
stochastic sequence. Let F0 = {∅,Ω}. Take any C > 0, then{∑

n

ξn converges
}
= A a.s.,

where A is the set of sample points, for which the following three series∑
P (|ξn| ≥ c|Fn−1) ,

∑
E
(
ξ̄n|Fn−1

)
,
∑

Var
(
ξ̄n|Fn−1

)
converge, where ξ̄n := ξn1{|ξn|≤C}.

1.8 Applications(II): Locally Absoulute Continu-
ity

Let (Ω,F) be a probability space with a filtration F = (Fn)n∈N0 so that that
F = F∞ := σ(∪nFn). Let’s suppose that two probability measures P and P̃ are
given on (Ω,F). Let’s write

Pn = P|Fn
, P̃n = P̃|Fn

for the restrictions of these measures to Fn.

Definition 1.4. We say that P̃ is locally absolutely continuous with respect
to P and write P̃

loc
� P, if

P̃n � Pn

for every n ∈ N0.

The fundamental question that we shall consider in this subsection is the
determination of conditions under which local absolute continuity P̃

loc
� P implies
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one of the properties P̃ � P, P̃ ⊥ P. It will become clear that martingale theory is
the mathematical apparatus that lets us give definitive answers to these questions.

Theorem 1.46. Suppose P̃
loc
� P. Let

Xn :=
dP̃n

dPn
for all n , and X∞ := lim sup

n→∞
Xn .

Then ({Xn,Fn}n∈N0
,P) is a non-negative martingale and hence Xn → X∞ P-

a.s.2 with E|X∞| <∞. The key thing is that for any A ∈ F , we have

P̃(A) =
∫
A

X∞ dP+ P̃(A ∩ {X∞ = ∞}) . (1.19)

Remark 1.24. Define P̃c and P̃s by letting P̃c(A) := X∞.P and P̃s(A) := P̃(A ∩
{X∞ = ∞}) for all A ∈ F . Then P̃ = P̃c + P̃s gives the Lebesgue decomposition
of P̃ with respect to P.

Proof. It is clear that Xn is Fn measurable; and if A ∈ Fn, then∫
A

Xn+1 dP =

∫
A

dP̃n+1

dPn+1
dP = P̃n+1(A) = P̃n(A)

=

∫
A

dP̃n

dPn
dP =

∫
A

Xn dP .

It follows that, with respect to P, the stochastic sequence (Xn,Fn)n≥0 is a non-
negaive martingale. Applying the martingale convergence theorem, we get Xn →
X∞ P-a.s. and E|X∞| < ∞. We want to check that the equality (1.19) in the
theorem holds.

Step 1. If P̃ � P. Then esists ξ ∈ L1 so that P̃ = ξ.P Then

Xn =
dP̃n

dPn
=

d(ξ.P)|Fn

dP|Fn

= E(ξ|Fn) , for all n P-a.s..

By Theorem 1.29,
X∞ = E(ξ|F) = ξ P-a.s..

2Since there appers different probability measures, we need to keep track of the measure to
which the a.s. refers.
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Step 2. To find a probability measure ρ on (Ω,F) so that P̃ � ρ, let

ρ = (P̃+ P)/2, ρn =
(
P̃n + Pn

)
/2 , for all n .

Clearly, P̃n � Pn ∼ ρn for all n and P̃ � ρ, P � ρ. Let

Yn =
dP̃n

dρn
, Zn =

dPn

dρn
, Y =

dP̃
dρ , Z =

dP
dρ .

Note that Yn + Zn = 2, so by Step 1, {Yn} and {Zn} are non-negative bounded
F-martingales on (Ω,F , ρ), with ρ-a.s. limits Y and Z. By Pn ∼ ρn,

Zn > 0 for all n ρ-a.s.,

and as we konw, XnZn = Yn ρ-a.s for all n. Letting n→ ∞, on {Z > 0} we have

X∞Z = Y , ρ-a.s.. (1.20)

and note that Y +Z = 2, ρ-a.s. we have ρ(Z = 0, Y = 0) = 0, hence on {Z = 0}
we have

X∞ = ∞ , ρ-a.s..

Given A ∈ F∞ we have

P̃(A) =
∫
A

Y dρ =

∫
A

X∞Z1{Z>0} dρ+
∫
A

Y 1{Z=0} dρ

=

∫
A

X∞1{Z>0} dP+

∫
A

Y 1{X∞=∞} dρ

=

∫
A

X∞ dP+ P̃(A ∩ {X∞ = ∞}) .

In the last equality we used that P(Z = 0) = P(X∞ = ∞) = 0.

Remark 1.25. Firstly, to get (1.20) we must assume {Z > 0}. In other words,

X∞Z = Y ρ-a.s.

is NOT ture. Secondly, by martingale convergence we konw that the limit of
{Xn} is P-almost surely unique. Generaly speaking, let X ′

∞ be one of the limit,
then the theorem becomes false because (1.20) may not hold, we only have, that
on {Z > 0}

X∞Z = Y , P-a.s..
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The Lebesgue decomposition implies the following useful tests for absolute
continuity or singularity of locally absolutely continuous probability measures.

Corollary 1.47. Let P̃
loc
� P. Let X∞ be same as in Theorem 1.46, then

P̃ � P ⇔ EX∞ = 1 ⇔ X∞ <∞ P̃-a.s. ,

and
P̃ ⊥ P ⇔ X∞ = 0 P-a.s. ⇔ X∞ = ∞ P̃-a.s. .

Example 1.29 (Kakutani Dichotomy for Infinite Product Measures). Let P̃ and
P be two product probability measures on (RN,BN

R). Let πn be the n-th projection,
i.e., πn(ω) = ωn, ω = (ωn) ∈ RN. Let P̃n and Pn be the restrictions of P̃ and P
to Fn = σ (πm : m ≤ n) , and let

Xn =
dP̃n

dPn
.

Let Fn(x) = P̃ (πn ≤ x) , Gn(x) = P (πn ≤ x) . Suppose Fn � Gn and let

ξn =
dFn

dGn
.

Evidently, random variables {ξn(πn)}, defined on (RN,BN
R,P), is independent with

EP [ξn(πn)] =

∫
R
ξn(x)Gn(dx) =

∫
R

dFn = 1 , for eachn .

On the other hand, we have

Xn =
dP̃n

dPn
=

n∏
m=1

ξm(πm) .

Thus, by Example 1.24, {Xn} is a martingale with respect to {Fn} and defined
on (RN,BN

R,P) so that Xn → X∞, P -a.s., and

P(X∞ = 0) ∈ {0, 1}

and it follows from Theorem 1.47 that either P̃ � P or P̃ ⊥ P. And we have a
concrete criterion for which of the two alternatives occurs.
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Theorem. P̃ � P or P̃ ⊥ P, according as∏
n

∫ √
ξn dGn > 0 or = 0 .

1.9 Applications(III): Galton–Watson Trees

This section is taken from [7]. We start by studying a few basic properties of
supercritical Galton–Watson trees. The main aim of this section is to introduce
the notion of size-biased trees. In particular, we see in Subsection 1.3 how this
allows us to prove the well-known Kesten–Stigum theorem. This notion of size-
biased trees can be developed to study more complicated models.

A Galton–Watson Trees and Extinction Probabilities

We are interested in processes involving (rooted) trees. The simplest rooted tree
is the regular rooted tree, where each vertex has a fixed number (say m, with
m > 1) of offspring. For example, here is a rooted binary tree:

Let Zn denote the number of vertices (also called particles or individuals) in
the n-th generation, then Zn = mn,∀n ≥ 0.

In probability theory, we often encounter trees where the number of offspring
of a vertex is random. The easiest case is when these random numbers are i.i.d.,
which leads to a Galton-Watson tree. A Galton–Watson tree starts with one
initial ancestor (sometimes, it is possible to have several or even a random number
of initial ancestors, in which case it will be explicitly stated). It produces a
certain number of offspring according to a given probability distribution. The new
particles form the first generation. Each of the new particles produces offspring
according to the same probability distribution, independently of each other and
of everything else in the generation. And the system regenerates.

We write pi for the probability that a given particle has i children, i ≥ 0;

thus
∑∞

i=0 pi = 1. In the case of a regular m-ary tree, pi = δi,m . To avoid trivial
discussions, we assume throughout that p0 + p1 < 1. As before, we write Zn for
the number of particles in the n -th generation.
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that a given particle has i children, i ≥ 0; thus
∑∞

i=0 pi = 1. [In the case of a regular m-ary tree, pm = 1

and pi = 0 for i 6= m.]

To avoid trivial discussions, we assume throughout that p0 + p1 < 1.

As before, we write Zn for the number of particles in the n-th generation. It is clear that if Zn = 0 for a

certain n, then Zj = 0 for all j ≥ n.

Figure 2: First generations in a Galton–Watson tree

In Figure 2, we have Z0 = 1, Z1 = 2, Z2 = 4, Z3 = 7.

One of the first questions we ask is about the extinction probability

q := P{Zn = 0 eventually}. (1.1)

Figure 1.1: A rooted binary tree, i.e., m = 2.

We will give a more precise description of the model. Let

ξ
(n)
i , i ≥ 1, n ≥ 0

be i.i.d. nonnegative integer-valued random variables with distribution (pi)i≥0.
The tree starts with one ancestor: Z0 = 1. The ancestor has Z1 = ξ

(0)
1 children

which forms the 1st generation. For the particles in the 1st generation, they have
ξ
(1)
j children for j = 1, . . . , Z1. The number of particles in 2nd generation is then

Z2 =

Z1∑
j=1

ξ
(1)
j

Generally, given Zn, the particles in n-th generation have ξ(n)j children for j =

1, . . . , Zn. The number of particles in (n+ 1)-th generation is

Zn+1 =

Zn∑
j=1

ξ
(n)
j

Clearly, (Zn)n≥0 is a Markov chain on N0, with an absorbing state zero, i.e., if
Zn = 0 for a certain n, then Zj = 0 for all j ≥ n.
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certain n, then Zj = 0 for all j ≥ n.

Figure 2: First generations in a Galton–Watson tree

In Figure 2, we have Z0 = 1, Z1 = 2, Z2 = 4, Z3 = 7.

One of the first questions we ask is about the extinction probability

q := P{Zn = 0 eventually}. (1.1)

Figure 1.2: A Galton–Watson tree with Z0 = 1, Z1 = 2, Z2 = 4, Z3 = 7.

Extinction Probability One of the first questions we ask is about the extinc-
tion probability

q := P (Zn = 0 eventually ) .

Since the event {Zn = 0} being non-decreasing in n, we have

q = P
( ∞⋃
n=1

{Zn = 0}
)
= lim

n→∞
P (Zn = 0) .

To compute the distribution of Zn, we introduce it’s genetating function fn,

fn(s) := EsZn =

∞∑
i=0

P(Zn = i)si, s ∈ [0, 1] ,

with the convention that 00 = 1. f ≡ f1 is exactly the generating function of
offspring fistribution :

f(s) = EsZ1 =

∞∑
i=0

pis
i, s ∈ [0, 1] .
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Note that

f(0) = p0, f(1) = 1, f ′(1) = m := EZ1 ∈ (0,∞] .

Lemma 1.48. fn(s) = f (n)(s) for all s ∈ [0, 1], where f (n) denotes the n-th fold
composition of f .

Proof. For fixed n ≥ 1, conditioning on Zn−1, Zn is the sum of Zn−1 i.i.d. random
variables having the common distribution which is that of Z1, thus

E
(
sZn |Zn−1

)
= f(s)Zn−1 ,

which implies
fn(s) = E sZn = E f(s)Zn−1 = fn−1(f(s)) .

By induction, the desired result follows.

Theorem 1.49. The extinction probability q is the smallest root of the equation
f(s) = s for s ∈ [0, 1],

Proof. By Lemma 1.48, we have

q = lim
n→∞

P(Zn = 0) = lim
n→∞

fn(0) .

Let us look at the graph of the function f on [0, 1]. The function is (strictly)
increasing and strictly convex, with f(0) = p0 ≥ 0 and f(1) = 1. In particular, it
has at most two fixed points.
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4 ESAIM: PROCEEDINGS

It turns out that the expected number of offspring plays an important role. Let

m := E(Z1) =

∞∑

i=0

ipi ∈ (0, ∞]. (1.2)

Theorem 1.1. Let q be the extinction probability defined in (1.1).

(i) The extinction probability q is the smallest root of the equation f(s) = s for s ∈ [0, 1], where

f(s) :=

∞∑

i=0

sipi, (00 := 1)

is the generating function of the reproduction law.
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q = P
( ⋃

n

{Zn = 0}
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Figure 1.3: Graph of f

If m ≤ 1, then p0 > 0, and f(s) > s for all s ∈ [0, 1), which implies fn(0) → 1.

In other words, q = 1 is the unique root of f(s) = s.

Assume nowm ∈ (1,∞]. This time, fn(0) converges increasingly to the unique
root of f(s) = s, s ∈ [0, 1) In particular, q < 1.

Remark 1.26. Theorem 1.49 tells us that in the subcritical case (i.e., m < 1) and
in the critical case (m = 1), the Galton-Watson process dies out with probability
1, whereas in the supercritical case (m > 1), the Galton-Watson process survives
with (strictly) positive probability. Of course, we will be mainly interested in the
supercritical case m > 1.

Martingales Suppose now m ∈ (0,∞). Let us introduce

Wn :=
Zn

mn
, n ≥ 0

and F0 = {∅,Ω},

Fn = σ (ξmi : i ≥ 1, 0 ≤ m ≤ n− 1) n ≥ 1 .
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It is clear that {Wn} is a martingale with respect to {Fn}. In fact, Zn ∈ Fn and
for n ≥ 0,

E(Zn+1|Fn) = E

( ∞∑
k=0

k∑
i=1

ξ
(n)
i 1{Zn=k}

∣∣∣∣Fn

)

=

∞∑
k=0

km1{Zn=k} = mZn .

Since {Wn} is non-negative, we have

Wn →W∞ P-a.s.

Where W∞ = lim supWn is an integrable random variable. It is, however, pos-
sible that W∞ = 0. So it is important to know when W∞ is non-degenerate. We
make the trivial remark that W∞ = 0 if the system dies out. In particular, we
have W∞ = 0 a.s. if m ≤ 1. What happens if m > 1?

We start with two simple observations. The first says that in general, P(W∞ =

0 ) equals q or 1, whereas the second tells us that W∞ is non-degenerate if the
offspring distribution admits a finite second moment.

Proposition 1.50. Assume m <∞. Then P(W∞ = 0) equals either q or 1, and
hence

{W∞ = 0} = {Zn = 0 eventually } a.s..

Proof. There is nothing to prove if m ≤ 1. So let us assume m ∈ (1,∞). By
markov property, for n ≥ 1,

Zn =

ξ∑
i=1

Z
(i)
n−1

where {(Z(i)
n )n≥0, i ≥ 1} are i.i.d. copies of (Zn) and ξ is independent of

{(Z(i)
n )n≥0, i ≥ 1} with offspring distribution.

Dividing on both sides by mn and letting n→ ∞, it follows that mW∞ is dis-
tributed as

∑ξ
i=1W

(i)
∞ , where {W (i)

∞ , i ≥ 1} are i.i.d. copies of W∞, independent
of Z1. In particular,

P(W∞ = 0) = E[P(W∞ = 0)ξ] = f(P(W∞ = 0)).

P(W∞ = 0) is a root of f(s) = s for s ∈ [0, 1]. So, P(W∞ = 0) is q or 1.
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Theorem 1.51. If EZ2
1 < ∞ and m > 1, then {Wn} is L2 bounded and Wn →

W∞ almost surely and in L2. In particular, E(W∞) = 1, and P(W∞ = 0) = q.

Proof. By conditional variation formular,

E
(
W 2

n |Fn−1

)
=W 2

n−1 + E
[
(Wn −Wn−1)

2 |Fn−1

]
.

To compute the second term, we observe

E
[
(Wn −Wn−1)

2 |Fn−1

]
= m−2nE

(
(Zn −mZn−1)

2 |Fn−1

)
,

and

E
[
(Zn −mZn−1)

2 |Fn−1

]
= E

( Zn−1∑
i=1

ξ
(n−1)
i −mk

)2∣∣∣∣Fn−1

 = Zn−1σ
2 .

Combining the last three equations gives

EW 2
n = EW 2

n−1 +
σ2

m2n
E (Zn−1) = EW 2

n−1 +
σ2

mn+1
.

So the desired result follows.

It turns out that the second moment condition in the preceding theorem can
be weakened to an X logX-type integrability condition.

Theorem 1.52 (Kesten and Stigum). Assume 1 < m <∞. Then

E(W∞) = 1 ⇔ P(W∞ > 0|non-extinction) = 1 ⇔ E
(
Z1 log+ Z1

)
<∞ .

Remark 1.27. The conclusion in the Kesten-Stigum theorem can also be stated
as

E(W∞) = 1 ⇔ P(W∞ = 0) = q ⇔
∞∑
i=1

pi i log i <∞ .

The condition E
(
Z1 log+ Z1

)
< ∞ may look technical. We will see in the next

paragraph why this is a natural condition.
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B Size-Biased Galton-Watson Trees∗

In order to introduce size-biased Galton-Watson processes, we need to view the
tree as a random element in a probability space (Ω,F ,P). To do this, let

U := {∅} ∪
∞⋃
k=1

Nk ,

If u, v ∈ U , we denote by uv the concatenated element, with u∅ = ∅u = u.

Definition 1.5. A tree ω is a subset of U satisfying:

(i) ∅ ∈ ω;

(ii) if uj ∈ ω for some j ∈ N, then u ∈ ω;

(iii) if u ∈ ω then uj ∈ ω if and only if 1 ≤ j ≤ Nu(ω) for some non-negative
integer Nu(ω).

In the language of trees, if u ∈ U is an element of the tree ω, u is a vertex of
the tree, and Nu(ω) the number of children. Vertices of ω are labeled by their
line of descent: if u = i1 · · · in ∈ U , then u is the in-th child of the in−1-th child
of . . . of the i1-th child of the initial ancestor ∅.

Let Ω be the space of all trees. We now endow it with a sigma-algebra. For
any u ∈ U , let Ωu := {ω ∈ Ω : u ∈ ω} denote the subspace of Ω consisting of
all the trees containing u as a vertex. (In particular, Ω∅ = Ω because all the
trees contain the root as a vertex, according to part (i) of the definition.) The
promised sigma-algebra associated with Ω is defined by

F := σ (Ωu : u ∈ U) ,

and for each n ≥ 0, let

Fn := σ (Ωu : u ∈ U , |u| ≤ n) ,

where |u| is the length of u (representing the generation of the vertex u in the
language of trees). Clearly, (Fn)n≥0 is a filtration so that F = σ(∪nFn). For any
tree ω ∈ Ω, let Zn(ω) be the number of individuals in the n-th generation, i.e.,

Zn(ω) :=
∑
u∈ω

1{|u|=n} =
∑
u∈ω

|u|=n−1

Nu(ω) .
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Theorem 1.5. (Kesten and Stigum [35]) Assume 1 < m <∞. Then

E(W ) = 1 ⇔ P(W > 0 | non-extinction) = 1 ⇔ E(Z1 log+Z1) <∞.

Remark. (i) The conclusion in the Kesten–Stigum theorem can also be stated as E(W ) = 1 ⇔ P(W =

0) = q ⇔
∑∞

i=1 pii log i <∞.

(ii) The condition E(Z1 log+Z1) < ∞ may look technical. We will see in the next paragraph why this is

a natural condition. �

1.2. Size-biased Galton–Watson trees

In order to introduce size-biased Galton–Watson processes, we need to view the tree as a random element

in a probability space (Ω, F , P).

Let U := {∅} ∪
⋃∞
k=1(N

∗)k, where N
∗ := {1, 2, · · · }.

If u, v ∈ U , we denote by uv the concatenated element, with u∅ = ∅u = u.

A tree ω is a subset of U satisfying: (i) ∅ ∈ ω; (ii) if uj ∈ ω for some j ∈ N
∗, then u ∈ ω; (iii) if u ∈ ω,

then uj ∈ ω if and only if 1 ≤ j ≤ Nu(ω) for some non-negative integer Nu(ω).

In the language of trees, if u ∈ U is an element of the tree ω, u is a vertex of the tree, and Nu(ω) the

number of children. Vertices of ω are labeled by their line of descent: if u = i1 · · · in ∈ U , then u is the in-th

child of the in−1-th child of . . . of the i1-th child of the initial ancestor ∅.

∅

1
2

11 12 13 21

121 131 132 211 212 213 214

Figure 4: Vertices of a tree as elements of U

Let Ω be the space of all trees. We now endow it with a sigma-algebra. For any u ∈ U , let Ωu := {ω ∈ Ω :

u ∈ ω} denote the subspace of Ω consisting of all the trees containing u as a vertex. [In particular, Ω∅ = Ω

Figure 1.4: Vertices of a tree as elements of U

It is easily checked that for any n, Zn ∈ Fn is a random variable with non-negative
integer values.

Let T : Ω → Ω be the identity application. Let (pi)i≥0 be a distuibution.
According to Neveu [6], there exists a probability P on Ω such that the law of
T under P is the law of the Galton-Watson tree with reproduction distribution
(pk).

Let P̃ be the probability on (Ω,F) such that for any n.

P̃|Fn
=Wn.P|Fn

.

Since (Wn) is a martingale with respect to (Fn), the existence of P̃ is guaranteed
by Kolmogorov’s extension theorem. Note that for any n,

P̃ (Zn > 0) = E
(
1(Zn>0}Wn

)
= EWn = 1 .

Therefore,
P̃ (Zn > 0, for all n) = 1 .

In other words, there is almost surely non-extinction of the Galton-Watson tree
T under the new probability P̃. The Galton-Watson tree T under P̃ is called a
size-biased Galton-Watson tree.
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Let us give a description of its paths. LetN := N∅. IfN ≥ 1, then there areN
individuals in the first generation. We write T1,T2, · · · ,TN for the N subtrees
rooted at each of the N individual in the first generation, i.e., for ω ∈ Ωu,
Tu(ω) := {v ∈ U : uv ∈ ω}.

Theorem 1.53. Let k ≥ 1. If A1, A2, · · · , Ak are elements of F , then

P̃ (N = k,T1 ∈ A1, · · · ,Tk ∈ Ak)

=
kpk
m

1

k

k∑
i=1

P (A1) · · ·P (Ai−1) P̃ (Ai)P (Ai+1) · · ·P (Ak) .

Proof. If we can prove the desired identity for all n and all A1, A2, · · · , Ak ∈ Fn.

By the monotone class theorem, the identity holds true for any A1 ∈ F and
all n and all A2, A3, · · · , Ak ∈ Fn, By the monotone class theorem again, it
holds for any A1 ∈ F , A2 ∈ F , and all n and all A3, A4, · · · , Ak ∈ Fn. Iterating
the procedure n times completes the argument. Hence, we may assume that
A1, A2, · · · , Ak are elements of Fn−1, for some n. Then

P̃ (N = k,T1 ∈ A1, · · · ,Tk ∈ Ak) = E
(
Zn

mn
1{N=k,T1∈A1,··· ,Tk∈Ak}

)
,

On the event {N = k}, we can write Zn =
∑k

i=1 Z
(i)
n−1, where Z(i)

n−1 denotes the
number of individuals in the (n − 1)-th generation of the subtree rooted at the
i-th individual in the first generation. Accordingly,

P̃ (N = k,T1 ∈ A1, · · · ,Tk ∈ Ak) =
pk
mn

k∑
i=1

E
(
Z

(i)
n−11{T1∈A1,··· ,Tk∈Ak}

)
.

Since
E
(
Z

(i)
n−11{T1∈A1,...,Tk∈Ak}

)
= E

(
Zn−11{T∈Ai}

)∏
j ̸=i

P (Aj)

= mn−1P̃ (Ai)
∏
j ̸=i

P (Aj) ,

the desired identity follows.

Theorem 1.53 tells us the following fact about the size-biased Galton-Watson
tree: The root has the biased distribution, i.e., having k children with probability
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kpk

m , among the individuals in the first generation, one of them is chosen randomly
(according to the uniform distribution) such that the subtree rooted at this vertex
is a size-biased Galton–Watson tree, whereas the subtrees rooted at all other
vertices in the first generation are independent copies of the usual Galton–Watson
tree.

Iterating the procedure, we obtain a decomposition of the size-biased Galton-
Watson tree with an (infinite) spine and with i.i.d. copies of the usual Galton-
Watson tree: The root ∅ =: w0 has the biased distribution, i.e., having k children
with probability kpk

m . Among the children of the root, one of them is chosen
randomly (according to the uniform distribution) as the element of the spine in
the first generation (denoted by w1 ). We attach subtrees rooted at all other
children; these subtrees are independent copies of the usual Galton- Watson tree.
The vertex w1 has the biased distribution. Among the children of w1, we choose at
random one of them as the element of the spine in the second generation (denoted
by w2 ). Independent copies of the usual Galton-Watson tree are attached as
subtrees rooted at all other children of w1, whereas w2 has the biased distribution.
And so on.
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vertex is a size-biased Galton–Watson tree, whereas the subtrees rooted at all other vertices in the first

generation are independent copies of the usual Galton–Watson tree.

Iterating the procedure, we obtain a decomposition of the size-biased Galton–Watson tree with an (infinite)

spine and with i.i.d. copies of the usual Galton–Watson tree: The root ∅ =: w0 has the biased distribution,

i.e., having k children with probability kpk
m . Among the children of the root, one of them is chosen randomly

(according to the uniform distribution) as the element of the spine in the first generation (denoted by w1).

We attach subtrees rooted at all other children; these subtrees are independent copies of the usual Galton–

Watson tree. The vertex w1 has the biased distribution. Among the children of w1, we choose at random

one of them as the element of the spine in the second generation (denoted by w2). Independent copies of

the usual Galton–Watson tree are attached as subtrees rooted at all other children of w1, whereas w2 has

the biased distribution. And so on. See Figure 5.

b

b

b

b

GW GW GW

GW GW

GW GW

w0 = ∅

w1

w2

w3

Figure 5: A size-biased Galton–Watson tree

From technical point of view, it is more convenient to connect size-biased Galton–Watson trees with

Galton–Watson branching processes with immigration, described as follows.

A Galton–Watson branching processes with immigration starts with no individual (say), and is charac-

terized by a reproduction law and an immigration law. At generation n (for n ≥ 1), Yn new individuals

immigrate into the system, while all individuals regenerate independently and following the same reproduc-

tion law; we assume that (Yn, n ≥ 1) is a collection of i.i.d. random variables following the same immigration

law, and independent of everything else in that generation.

Our description of the size-biased Galton–Watson tree can be reformulated in the following way: (Zn −

1, n ≥ 0) under P̂ is a Galton–Watson branching process with immigration, whose immigration law is that

of N̂ − 1, with P(N̂ = k) := kpk
m for k ≥ 1.

Figure 1.5: A size-baised Galton–Watson tree

From technical point of view, it is more convenient to connect size-biased
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Galton–Watson trees with Galton–Watson branching processes with immigration,
described as follows.

A Galton-Watson branching processes with immigration starts with no indi-
vidual (say), and is characterized by a reproduction law and an immigration law.
At generation n (for n ≥ 1 ), Yn new individuals immigrate into the system, while
all individuals regenerate independently and following the same reproduction law;
we assume that (Yn, n ≥ 1) is a collection of i.i.d. random variables following the
same immigration law, and independent of everything else in that generation.

Our description of the size-biased Galton-Watson tree can be reformulated in
the following way: (Zn − 1)n≥0 under P̃ is a Galton-Watson branching process
with immigration, whose immigration law is that of Ñ − 1, so that {Ñ = k} has
probability kpk

m for k ≥ 1.

More precisely, there exists another probability space (E, E ,P) and a processes
(Xn)n≥0 defined on it, is a Galton-Watson branching processes with immigration
starts with no individual. The reproduction law is (pi)i≥0 and immigration law
is that of Ñ − 1 so that

P(Ñ = k) =
kpk
m

, for k ≥ 1 .

Then (Zn − 1)n≥0 under P̃ concides with (Xn)n≥0 under P.

C Proof of the Kesten–Stigum Theorem∗

We prove the Kesten-Stigum theorem, by means of size-biased Galton-Watson
trees. Let us start with an elementary result, which is a classical exercise in the
course of probebility theory.

Lemma 1.54. Let X,X1, X2, · · · be i.i.d. non-negative random variables. Then

lim sup
n→∞

Xn

n
=

{
0 , EX <∞ ;

∞ , EX = ∞ .
a.s..

[4] presented a concept of conditional (sub-) martingales given a sigma-field,
which is a natural generalization of martingales: Let (Ω,F ,P) be a probability
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space, {Fn} a filtration and G ⊂ F1 a σ -field. Then the following definition
of conditional submartingale (martingale) can be introduced: for an adapted
sequence {Xn}, we say it is a conditional submartingale with respect to {Fn}
given G, if E(|Xn||G) <∞ a.s. and E(Xn+1|G) ≥ Xn a.s. for all n.

Theorem (Convergence of Conditional Submartingale, [4]). Let {Xn} be a con-
ditional supermartingale given σ-field G with respect to {Fn}. If

sup
n

E(|Xn| |G) <∞ a.s.,

then {Xn} converges to some r.v. X such that E(X|G) <∞ a.s..

The Kesten–Stigum theorem will be a consequence of Seneta’s theorem for
branching processes with immigration.

Theorem 1.55 (Seneta’s Theorem). Let (Zn)n≥0 denote the number of indi-
viduals of a Galton-Waston branching process with immigration (Yn)n≥1 starting
with no individual. Assume that m ∈ (1,∞), where m denotes the expectation of
the reproduction law.

(i) If E
(
log+ Y1

)
<∞, then lim Zn

mn exists and is finite a.s.

(ii) If E
(
log+ Y1

)
= ∞, then lim sup Zn

mn = ∞, a.s.

Proof. Assume E
(
log+ Y1

)
< ∞. Lemma 1.54 tells us in this case that for any∑

k
Yk

mk <∞ a.s. Let Y be the sigma-algebra generated by (Yn) . Clearly,

E (Zn+1|Fn,Y) = mZn + Yn+1 ≥ mZn

thus
(
Zn

mn

)
is a sub-martingale given Y, and

E
(
Zn

mn
| Y
)

=

n∑
k=0

Yk
mk

a.s..

Thus
sup
n

E
(
Zn

mn
| Y
)
<∞ a.s..

As a consequence, almost surely, lim Zn

mn exists and is finite.
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Assume now E
(
log+ Y1

)
= ∞. Then by Lemma 1.54,

lim sup
n→∞

logYn
n

= ∞ a.s.,

since Zn ≥ Yn it follows that for any lim sup Zn

mn = ∞ a.s..

Proof of the Kesten-Stigum theorem.

Let m ∈ (1,∞). Note that E[log+(Ñ − 1)] is finite if and only if E(log+ Ñ) is
, and

mE(log+ Ñ) =

∞∑
i=1

ipi log i = E(Z1 log+ Z1) .

If
∑

i pi i log i <∞, then E log+(Ñ − 1) <∞. By Seneta’s theorem,

lim
n→∞

Zn − 1

mn
=W∞ <∞ P̃-a.s..

By Corollary 1.47, E(W∞) = 1; in particular, P(W∞ = 0) < 1 and thus P(W∞ =

0) = q.

If
∑∞

i=1 pii log i = ∞, then E log+(Ñ−1) = ∞. By Seneta’s theorem, P̃-almost
surely,

lim sup
n→∞

Zn − 1

mn
=W∞ = ∞ P̃-a.s..

By Corollary 1.47, W∞ = 0, P-a.s. We complete the proof.

1.10 Backwards Martingales

The concepts of filtration and martingale don’t require the index set (often in-
terpreted as time) to be a subset of R+. Hence we can consider the case the
martingale indexed by non-positive integers.

Definition 1.6. Let X = (X−n)n≥0 be a martingale with respect to F =

(F−n)n≥0. Then X is called a backwards martingale.
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Remark 1.28. A backwards martingale is always uniformly integrable. This fol-
lows from Example 1.2 and the fact that

E (X0|F−n) = X−n a.s. for each n ≥ 0 .

Theorem 1.56 (Convergence Theorem for Backwards Martingales). Let X =

(X−n)n≥0 be a martingale with respect to F = (F−n)n≥0. Let F−∞ := ∩∞
n=1F−n.

Then there exists a r.v. X−∞ ∈ F−∞ such that X−n → X−∞ a.s. and in L1.

Moreover,
X−∞ = E (X0|F−∞) a.s..

Proof. Let a < b and fix n ∈ N. Let Ua,b
−n be the number of upcrossings of X over

[a, b] between times −n and 0. Further, let Ua,b = limn→∞ Ua,b
−n.

The upcrossing inequality for submartinglaes, Lemma 1.24 implies that

EUa,b
−n ≤ E (X0 − a)

+ − E (X−n − a)
+

b− a
≤ E (X0 − a)

+

b− a
.

Letting n→ ∞ and using the monotone convergence theorem, we have

EUa,b <∞ .

By Remark 1.18, almost surely, the limit X−∞ exists. Clearly X−∞ ∈ F−∞.
Since {X−n} is uniformly integrable, by Fatou’s lemma,

E|X−∞| ≤ lim inf
n→∞

E|X−n| <∞ ,

so X−∞ is integrable, and hence X−n converges to X in L1.

Now, it suffices to show that for any A ∈ F−∞, E(X−∞1A) = E(X01A). Since
E (X0|F−n) = X−n, we have

E(X−n1A) = E(X01A) , for all n ∈ N .

Letting n→ ∞, the desired result follows from that (X−n) → X−∞ in L1.

Let (Gn)n≥0 be a decreasing sequence of sub-σ-fields on some probability space
(Ω,F ,P); i.e., Gn+1 ⊂ Gn ⊂ F for all n ≥ 0. Let G∞ = ∩nGn. Let (ξn)n≥0 be a
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sequence of integrable random variables adapted to (Gn)n≥0; i.e., ξn ∈ Gn for all
n ≥ 0. Suppose that for each n ≥ 0,

ξn+1 = E(ξn|Gn+1) a.s.. (1.21)

(Notice that this is equivalent to ξn = E(ξ0|Gn) a.s. for all n ≥ 0.) Then let

X−n = ξn and F−n = Gn , for all n ≥ 0 . (1.22)

Clearly (X−n)n≥0 is a backwards martingale with respect to (F−n). Conversely,
for any backwards martingale (X−n) with respect to (F−n), define (ξn,Gn) by
(1.22). Then (ξn,Gn) is adapted, integrable and satisfies (1.21). Terefore, we also
say that (ξn)n≥0 is a baskwards martingle with respect to (Gn)n≥0. As we can see,
the backwards martingale is indeed the conditional expections of an integrable
random variable given a decreasing sequence of σ-fields.

It follows directly from the convergence theorem of backwards martingales
that

Corollary 1.57. For any integrable random variable ξ,

E (ξ|Gn) → E (ξ|G∞) a.s. and in L1 .

We can enhance the result above, as following.

Proposition 1.58. Let (Gn)n≥0 be a decreasing sequence of σ-fields. Let ξn, ξ∞
be random variables. (Note that we did NOT assume (ξn) is adapted.) Suppose
that ξn → ξ∞ a.s. and |ξn| ≤ η for some η ∈ L1. Then

E (ξn|Gn) → E (ξ∞|G∞) a.s. and in L1 .

Proof. By Corollary 1.57, it suffices to show that

E (|ξn − ξ∞||Gn) → 0 a.s. and in L1 .

The L1 convergence trivially follows from the almost sure convergence and the
Lebesgue domainted convergence theorem. To show the almost sure convergence,
let ηm := supn≥m |ξn − ξ∞| ≤ 2η, then for fixed m, by Corollary 1.57 we have

lim sup
n→∞

E (|ξn − ξ∞||Gn) ≤ lim
n→∞

E(ηm|Gn) = E(ηm|G∞) a.s..
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Letting m → ∞, by the domainted convergence for conditional expectation, the
desired result follows.

Example 1.30 (Ballot Theorem). Let {ξj , 1 ≤ j ≤ n} be i.i.d. nonnegative in-
tegervalued r.v.’s, let Sk = ξ1 + · · · + ξk, and let G = {Sj < j for 1 ≤ j ≤ n} .
Then

P (G|Sn) =

(
1− Sn

n

)+

.

The result is trivial when Sn ≥ n, so suppose Sn < n. Let X−j = Sj/j and
F−j = σ (Sj , . . . , Sn) for 1 ≤ j ≤ n. It’s easy to see that (X−j) is a backwards
martingale with respect to (F−j). Let T = inf {k ≥ −n : Xk ≥ 1} and set T = −1

if the set is ∅.We claim thatXT = 1 on Gc. To check this, note that if Sj+1 < j+1

then the fact that the ξi are nonnegative integer values implies Sj ≤ Sj+1 ≤ j.

since G ⊂ {T = −1} and S1 < 1 implies S1 = 0, we have XT = 0 on G. Noting
F−n = σ (Sn) and using optional stopping theorem, we see that on {Sn < n}

P (Gc|Sn) = E (XT |F−n) = X−n = Sn/n

Subtracting from 1 and recalling that this computation has been done under the
assumption Sn < n gives the desired result.

Remark 1.29. To explain the name, consider an election in which candidate B
gets β votes and A gets α > β votes. Let ξ1, ξ2, . . . , ξn be i.i.d. and take values 0
or 2 with probability 1/2 each. Interpreting 0 ’s and 2 ’s as votes for candidates
A and B, we see that G = {A leads B throughout the counting } so if n = α+β

P (G|B gets β votes ) =

(
1− 2β

n

)+

=
α− β

α+ β

Convergence of Backwards Submartingales Let {Fn}n≥0 be a decreasing
sequence of sub-σ-fields on (Ω,F ,P), and let the {Xn}n≥0 be a sequence of ran-
dom variables. We say that {Xn}n≥0 is a backwards submartingale with respect
to {Fn}, if E |Xn| <∞, Xn is Fn-measurable, and E (Xn|Fn+1) ≥ Xn+1 a.s., for
every n ≥ 0.
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Theorem 1.59. Let {Xn}n≥0 be a backwards submartingale with respect to {Fn}.
Then there exists a R-valued random variable X∞ ∈ F∞ so that Xn → X∞ a.s..
If in addition,

sup
n∈N0

E|Xn| <∞
(
⇔ lim

n→∞
EXn > −∞

)
,

then {Xn} is uniformly integrable and hence X∞ is an integrale random variable
and {Xn} converges to X∞ in L1.

Proof. As in the proof of Theorem 1.56, the upcrossing inequality implies the
existence of such a X∞. It suffices to show that if {Xn} is L1 bounded, then
it’s uniformly integrable. But firstly, let’s deal with the equivallence condition
of L1-boundedness. Since {X+

n } is also a backwards martingale with respect to
(Fn), we have

E|Xn| = 2EX+
n − EXn ≤ 2EX+

0 − EXn .

Since (EXn) is decreasing, so limn EXn > −∞ implies that {Xn} is L1 bounded.

We now prove that {X+
n } is uniformly integrable. For any λ > 0, since {X+

n }
is also a submartingale with respect to {Fn},

EX+
n 1{X+

n >λ} = EXn1{Xn>λ} ≤ EX01{Xn>λ} .

On the other hand, by Markov inequality,

P(Xn > λ) ≤ EX+
n

λ
≤ EX+

0

λ
,

so supn≥0 P (|Xn| > λ) converges to zero as λ→ ∞. Hence

sup
n≥0

EX+
n 1{X+

n >λ} ≤ sup
n≥0

EX01{Xn>λ} → 0 as λ→ ∞

follows from the absolute continuity of the integral.

We now prove that {X−
n } is uniformly integrable. Observe that for each

m < n, we have

EX−
n 1{X−

n >λ} = −EXn1{Xn<−λ} = EXn1{Xn>−λ} − EXn

≤ EXm1{Xn>−λ} − EXn

= EXm − EXn − EXm1{Xn<−λ} .
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So given ϵ > 0, we can certainly choose m = mϵ so large that 0 ≤ EXm−EXn ≤ ϵ

holds for every n > m, and for that m = mϵ, by the absolute continuity of the
integral, there exists λϵ = λ(mϵ, ϵ) > 0 so that for any λ > λϵ,

sup
n>m

EXm1{Xn<−λ} < ϵ ; sup
n≤m

EX−
n 1{X−

n >λ} < ϵ .

Consequently, for any λ > λϵ we have:

sup
n≥1

EX−
n 1{X−

n >λ} < 2ϵ

and thus {X−
n } is also uniformly integrable.

1.11 Applacation(IV): Exchangeability
With many data acquisitions, such as telephone surveys, the order in which the
data come does not matter. Mathematically, we say that a family of random
variables is exchangeable if the joint distribution does not change under finite
permutations. De Finetti’s structural theorem says that a countable family of
E-valued exchangeable random variables can be described by a two-stage exper-
iment. At the first stage, a probability distribution Ξ on E is drawn at random.
At the second stage, i.i.d. random variables with distribution Ξ are implemented.

Recall that a finite permutation is a bijection ϱ : I → I that leaves all but
finitely many points unchanged.

Definition 1.7. Let I be an arbitrary index set and let E be a Polish space. A
family (Xi)i∈I of random variables with values in E is called exchangeable if

L
[(
Xϱ(i)

)
i∈I

]
= L

[
(Xi)i∈I

]
for any finite permutation ϱ : I → I.

Remark 1.30. Clearly, the following are equivalent. (Xi)i∈I is exchangeable if
and only if for each n ∈ N, i1, . . . , in ∈ I are pairwise distinct and j1, . . . , jn ∈ I

are pairwise distinct, there holds

L [(Xi1 , . . . , Xin)] = L [(Xj1 , . . . , Xjn)]

In particular, exchangeable random variables are identically distributed.
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Example 1.31. If (Xi)i∈I is i.i.d., then (Xi)i∈I is exchangeable.

Example 1.32. Let Y be a random variable with values in [0, 1] . Assume
that, given Y , the random variables (Xi)i∈I are independent and Bernouli(Y )

distributed, i.e., for any two disjoint nonempty finite subset of I, namely J1 and
J0,

P (Xj = 1, j ∈ J1 ; Xj = 0, j ∈ J2|Y ) = Y |J0|(1− Y )|J2| .

Then (Xi)i∈I is exchangeable.

A Exchangeable Sequences

Although we defined exchangeability for arbitary family of random variables, we
only deal with the case that the family is countable. Now, let X = (Xn)n∈N be a
stochastic process with values in E, a Polish space. The following settings were
discussed in the course of probability theory when talking Hewitt-Sage 0-1 law.

For each n ∈ N, let S(n) be the set of permutations of N so that ϱ(k) = k

for all k > n. For ϱ ∈ S(n) and x ∈ EN, denote xϱ =
(
xϱ(1), xϱ(2), . . .

)
∈ EN.

If A ∈ σ (Xn, n ∈ N) is an event, then there is a measurable B ∈ B(E)N with
A = {X ∈ B}. We denote Aϱ = {Xϱ ∈ B} for ϱ ∈ S(n). Then we define, for
each n ∈ N,

En := {A : Aϱ = A for all ϱ ∈ S(n)} .

Clearly, En+1 ⊂ En. Then define

E :=
⋂
n∈N

En = {A : Aϱ = A for all finite permutation ϱ of N} ,

is called the exchangeable σ-algebra (for X). Each A ∈ E is called a exchange-
able event.

Remark 1.31. Denote by T the tail σ-algebra (for X), i.e.,

T =
⋂
n∈N

σ (Xn+1, Xn+2, . . .) .

Then T ⊂ E , since σ (Xn+1, Xn+2, . . .) ⊂ En for n ∈ N. Moreover, strict inclusion
is possible. Indeed, let E = {0, 1} and let X1, X2, . . . be independent random
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variables with P (Xn = 1) = 2−n. Then
∑∞

n=1Xn is measurable with respect to
E but not with respect to T .

Lemma 1.60. Let X = (Xn)n∈N be exchangeable. Let φ : EN → R is measurable.
If E|φ(X)| <∞, then for all n ∈ N and all ϱ ∈ S(n)

E [φ(X)|En] = E [φ (Xϱ) |En] ,

Moreover,
E [φ(X)|En] = An(φ) :=

1

n!

∑
ϱ∈S(n)

φ (Xϱ) .

Proof. Let {X ∈ B} ∈ En, where B ∈ B(E)N. We will show that

E
[
φ(X)1{X∈B}

]
= E

[
φ(Xϱ)1{X∈B}

]
.

Since X and Xϱ have the same distribution,

E[φ(X)1{X∈B}] = E
[
φ (Xϱ) 1{Xϱ∈B}

]
.

Note that {X ∈ B} ∈ En, ϱ ∈ S(n), we have {X ∈ B} = {Xϱ ∈ B} and

E
[
φ(X)1{X∈B}

]
= E

[
φ(Xϱ)1{X∈B}

]
.

From this follows , note that An(φ) is En -measurable, so

E [φ(X)|En] = E

 1

n!

∑
ϱ∈S(n)

φ (Xϱ) |En

 =
1

n!

∑
ϱ∈S(n)

φ (Xϱ) .

We complete the proof.

Example 1.33. Let X = (Xn)n∈N be exchangeable real random variables and
E|X1| <∞. Then

E(X1|En) =
1

n!

∑
ϱ∈S(n)

Xϱ(1) =
1

n

n∑
i=1

Xi .
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By Theorem 1.57,

1

n

n∑
i=1

Xi → E (X1|E) a.s. and in L1

In fact E (X1|E) is T -measurable, since it’s easy to see that

lim sup
n→∞

1

n

n∑
i=1

Xi and lim inf
n→∞

1

n

n∑
i=1

Xi

are T -measurable. Hence

E (X1|E) = E [E (X1|E) |T ] = E [X1|T ] .

Example 1.34 (SLLN). If X1, X2, . . . are real and i.i.d. with E |X1| <∞, then

1

n

n∑
i=1

Xi → E [X1] a.s..

By Kolmogorov 0-1 law (Hewitt-Sage 0-1 law, respectively) the tail σ-algebra T
(the exchangebale σ-algebra E) is trivial, hence

E [X1|T ] = EX1 a.s.

(E [X1|E ] = EX1 a.s. )

By Example 1.33, SLLN follows.

We close this subsection with a generalization of Example 1.33. This conclu-
sion from the convergence theorem for backwards martingales will be used in an
essential way in the next section.

Theorem 1.61. Let X = (Xn)n∈N be an exchangeable family of random variables
with values in E. Let φ : EN → R be measurable so that E |φ (X)| <∞. Then

E[φ(X)|E ] = lim
n→∞

An(φ) a.s. and in L1 .

If in addition, φ(x) can be regarded as a function of (x1, · · · , xk), x ∈ EN, that
is φ(x) = ϕ(x1, · · · , xk) for some ϕ : Ek → R, then

E[φ(X)|E ] = E[φ(X)|T ]
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Proof. Since E [φ(X)|En] = An(φ), by Theorem 1.57,

An(φ) → E[φ(X)|E ] a.s. and in L1

As for Example 1.33, we can argue that E[φ(X)|E ] = limnAn(φ) is T -measurable.
Indeed, for all l ∈ N,

lim sup
n→∞

∣∣{ϱ ∈ S(n) : ϱ−1(i) ≤ l for some i ∈ {1, . . . , k}
}∣∣

n!
= 0 .

Thus, for large n, the dependence of An(φ) on the first l coordinates is negligible.
Hence

E (φ(X)|E) = E [E (φ(X)|E) |T ] = E [φ(X)|T ] .

Corollary 1.62. Let X = (Xn)n∈N be exchangeable. Then, for any A ∈ E there
exists a C ∈ T with P(A4C) = 0.

Proof. Since E ⊂ σ (X1, X2, . . .) , by the approximation theorem for measures,
there exists a sequence (An)n∈N withAn ∈ σ (X1, . . . , Xn) and such that P (A∆An) →
0. Let Bn ∈ B(E)n be measurable with

An = {(X1, . . . , Xn) ∈ Bn}

for all n ∈ N. Letting φn(x) := 1Bn
(x1, · · · , xn), for x ∈ EN. Theorem 1.61

implies that

1A = E[1A|E ] = E
[

lim
n→∞

1An
|E
]
= E

[
lim
n→∞

φn(X)|E
]

= lim
n→∞

E [φn(X)|E ] = lim
n→∞

E [φn(X)|T ] =: ψ a.s..

Hence there is a T -measurable function ψ with ψ = 1A almost surely. We can
assume that ψ = 1C for some C ∈ T .

Corollary 1.63 (Hewitt-Savage 0-1 Law). Let X = (Xn)n∈N be i.i.d. random
variables. Then the exchangeable σ-algebra E for X is trivial; that is, P(A) ∈
{0, 1} for all A ∈ E.
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B De Finetti’s Theorem

Hence we shall show that a countably infinite exchangeable family of random
variables is an i.i.d. family given the exchangeable σ-algebra E . Furthermore, we
compute the conditional distribution of the individual random variables. As a
first step, we define conditional independence formally.

Definition 1.8. Let (Ω,F ,P) be a probability space, let G ⊂ F be a σ-algebra
and let (Ai)i∈I be an arbitrary family of subsets of F . Assume that for any finite
J ⊂ I, any choice of Aj ∈ Aj , j ∈ J

P (∩j∈JAj |G) =
∏
j∈J

P (Aj |G) a.s.

Then the family (Ai)i∈I is called independent given G.

Remark 1.32. A family (Xi)i∈I of random variables is called independent (and
identically distributed) given G if (σ (Xi))i∈I are independent given G (and the
conditional distributions P (Xi ∈ ·|G) are equal).

Let X = (Xn)n∈N be a stochastic process on a probability space (Ω,F ,P)
with values in a Polish space E. Let E be the exchangeable σ-algebra and let T
be the tail σ-algebra.

Theorem 1.64 (de Finetti). The sequence X = (Xn)n∈N is exchangeable iff
there exists a σ-algebra G ⊂ F such that (Xn) is i.i.d. given G. In this case, G
can be chosen to equal the exchangeable σ-algebra E or the tail-σ-algebra T .

Proof. Necessity. Let X be exchangeable and let G = E or G = T .It fuffices
to show that, for any given k ∈ N and bounded measurable maps fi : E → R,
i = 1, 2, · · · k, we have

E

[
k∏

i=1

fi (Xi) |G

]
=

k∏
i=1

E [fi (Xi) |G] a.s., and

E [fi (Xi) |G] = E [fi (X1) |G] a.s. for each i .

The second indentity is evident, since by Theorem 1.61,

E [fi (Xi) |G] = lim
n→∞

fi(X1) + · · ·+ fi(Xn)

n
= E [fi (Xi) |G] a.s..
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Now, define f̂i : EN → R by letting f̂i(x) = fi(xi) for x ∈ EN. Let φj = Πj
i=1f̂i

for j ≤ k. Then it suffficies to show that

E [φk(X)|G] =
k∏

i=1

E [fi (Xi) |G] a.s..

which is equivalent to

lim
n→∞

An(φk) = lim
n→∞

k∏
i=1

An(f̂i) a.s..

By induction, we only need to show that

lim
n→∞

An(φk) = lim
n→∞

An(φk−1)An(f̂k) a.s..

Note that

An (φk−1)An

(
f̂k

)
=

1

n!

∑
ϱ∈S(n)

φk−1 (X
ϱ)

1

n

n∑
i=1

fk (Xi)

=
1

n · n!
∑

ϱ∈S(n)
k≤i≤n

φk−1 (X
ϱ) fk

(
Xρ(i)

)
+

1

n · n!
∑

ϱ∈S(n)
1≤i<k

φk−1 (X
ϱ) fk

(
Xρ(i)

)

=
n− k + 1

n · n!
∑

ϱ∈S(n)

φk (X
ϱ) +

1

n · n!
∑

ϱ∈S(n)

φk−1 (X
ϱ)

k−1∑
i=1

fk
(
Xρ(i)

)
=
n− k + 1

n
An (φk) +Rn,k

where
|Rn,k| ≤ 2 ‖φk−1‖∞ · ‖fk‖∞ · 1

n · n!
∑

ϱ∈S(n)

(k − 1)

= 2 ‖φk−1‖∞ · ‖fk‖∞ · k − 1

n
.

Leeting n→ ∞, the desired result follows.

Sufficiency. Now let X be i.i.d. given G for a suitable σ -algebra G ⊂ F . For
any bounded measurable function φ : EN → R can be regraded as a function of
the first n components, and for any ϱ ∈ S(n), we have

E[φ(X)|G] = E [φ (Xϱ) |G] .
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Hence
E[φ(X)] = E[E[φ(X)|G]] = E [E [φ (Xϱ) |G]] = E [φ (Xϱ)] ,

whence X is exchangeable.

Futher results∗ Denote by M1(E) the set of probability measures on E equipped
with the topology of weak convergence. That is, a sequence (µn)n∈N in M1(E)

converges weakly to a µ ∈ M1(E) if and only if
∫
f dµn →

∫
f dµ for any bounded

continuous function f : E → R. At this point, we use the topology only to make
M1(E) a measurable space, namely with the Borel σ-algebra B (M1(E)) . Now
we can study random variables with values in M1(E), so-called random measures
.

For x ∈ EN, ξn(x) = 1
n

∑n
i=1 δxi

∈ M1(E). Then the random measure

Ξn := ξn(X) :=
1

n

n∑
i=1

δXi

is called the empirical distribution of X1, . . . , Xn.

Theorem (de Finetti Representation Theorem). The family X = (Xn)n∈N is
exchangeable if and only if there is a σ-algebra G ⊂ F and an G-measurable
random measure Ξ∞ : Ω → M1(E) with the property that given Ξ∞, (Xn)n∈N is
i.i.d. with L [X1|Ξ∞] = Ξ∞. In this case, we can choose G = E or G = T .

Proof. Let X be exchangeable. Then, by Theorem 1.64, there exists a σ -algebra
G ⊂ F such that (Xn)n∈N is i.i.d. given G. As E is Polish, there exists a regular
conditional distribution, Ξ∞ := L [X1|G] . For measurable A1, . . . , An ⊂ E, we
have P (Xi ∈ Ai|G) = Ξ∞ (Ai) for all i = 1, . . . , n; hence

P (Xi ∈ Ai , 1 ≤ i ≤ n|Ξ∞)

= E
[
P (Xi ∈ Ai , 1 ≤ i ≤ n|G) |Ξ∞

]
= E

[
n∏

i=1

Ξ∞ (Ai) |Ξ∞

]
=

n∏
i=1

Ξ∞ (Ai)

Therefore, L [X|Ξ∞] = Ξ⊗N
∞ , the desired result follows.
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Example 1.35. Let (Xn)n∈N be exchangeable and assume Xn ∈ {0, 1}. Then
there exists a random variable Y : Ω → [0, 1] such that,i.e., for any two disjoint
nonempty finite subset of N, namely J1 and J0,

P (Xj = 1, j ∈ J1 ; Xj = 0, j ∈ J2|Y ) = Y |J0|(1− Y )|J2| .

In other words, (Xn)n∈N is independent given Y and Bernoulli(Y )-distributed.
Compare Example 1.32.

This result is useful for people concerned about the foundations of statistics,
since from the palatable assumption of symmetry one gets the powerful conclusion
that the sequence is a mixture of i.i.d. sequences.
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Chapter 2

Ergodic Theorems

Laws of large numbers, e.g., for i.i.d. integrable random variables X1, X2, . . . ,

state that the sequence of averages converges a.s. to the expected value,

1

n

n∑
i=1

Xi → EX1 a.s..

Hence averaging over one realization of many random variables is equivalent to
averaging over all possible realizations of one random variable. In the termi-
nology of statistical physics this means that the time average, or path (Greek:
odos) average, equals the space average. The “space” in “space average” is the
probability space in mathematical terminology, and in physics it is considered
the space of admissible states with a certain energy (Greek: ergon). Combining
the Greek words gives rise to the name ergodic theory, which studies laws of large
numbers for possibly dependent, but stationary, random variables.

In fract, the theory of stationary stochastic processes can be stated outside
the framework of probability theory as the theory of one-parameter groups of
transformations of a measure space that preserve the measure; this theory is very
close to the general theory of dynamical systems and to ergodic theory.
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2.1 Definitions and Examples

A Stationarty Sequence

Let I ⊂ R be a set that is closed under addition, for us the important examples
are N0, N, Z, [0,∞) and R.

Definition 2.1. A stochastic process X = (Xt)t∈I taking values in a Poish space
(E,B(E)) is called stationary (in the strict sense) if

L
[
(Xt+s)t∈I

]
= L

[
(Xt)t∈I

]
for all s ∈ I .

Remark 2.1. Although we give a general definition, we will focus on the case that
X is a seqnence, i.e., I = N0. Moreover, one can see that, by induction, X is
stationary if and only if

L
[
(Xn)n∈N0

]
= L

[
(Xn+1)n∈N0

]
,

which is equivalent to L(X0, · · · , Xn) = L(X1, · · · , Xn+1) for all n ∈ N.

We begin by giving four examples that will be our constant companions.

Example 2.1 (IID Sequence). If X = (Xn)n≥0 is i.i.d. random variables, then
X is stationary. If only X = (Xn)n≥0 is identically distributed (without the
independence), then in general X is not stationary. For example, consider X1 =

X2 = X3 = · · · but X0 6= X1. Then X is not stationary.

Example 2.2 (Markov Chain). Let X = (Xn)n≥0 be a Markov chain on a Poish
space (E,B(E)) with transition probability P (x,A) and stationary distribution
π, i.e., π(A) =

∫
π(dx)P (x,A). If X0 has distribution π then X0, X1, . . . is a

stationary sequence. A special case to keep in mind for counterexamples is the
chain with state space E = {0, 1} and transition probability P (x, {1−x}) = 1. In
this case, the stationary distribution has π(0) = π(1) = 1/2 and (X0, X1, . . .) =

(0, 1, 0, 1, . . .) or (1, 0, 1, 0, . . .) with probability 1/2 each.
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Example 2.3 (Rotation of the Circle). Let Ω = [0, 1),F = Borel subsets, P =

Lebesgue measure. Let θ ∈ (0, 1), and for n ≥ 0, let

Xn(ω) = (ω + nθ) mod 11 , for ω ∈ [0, 1) .

This example is a special case of Example 2.2: Let p(x, {y}) = 1 if y = (x +

θ) mod 1.

B Measure-Preserving Dynamical Systerm

In the following, assume that (Ω,F ,P) is a probability space and φ : Ω → Ω is a
measurable map.

Definition 2.2. φ is called a measure-preserving transformation, if

P
(
φ−1(A)

)
= P(A) for all A ∈ F . (2.1)

In this case, (Ω,F ,P, φ) is called a measure-preserving dynamical system.
Evidently, the condition (2.1) can be changed by

P
(
φ−k(A)

)
= P(A) for all k ∈ N, A ∈ F .

Remark 2.2. In fact, measure-preserving dynamical system have a close relation-
ship with stationary sequence. Roughly speaking, we can regard them as the
same thing and the reason can be found in Example 2.6. In my opinion, the
measure-preserving dynamical system is more easy to deal with at most times.

Let us consider the physical hypotheses that lead to the consideration of
measure preserving transformations. Suppose that Ω is the phase space of a
system that evolves (in discrete time) according to a given law of motion. If ω
is the state at instant n = 1, then φn(ω) 2 where φ is the translation operator
induced by the given law of motion, is the state attained by the system after n
steps. Moreover, if A is some set of states ω, then φ−1(A) = {ω : φω ∈ A} is,

1 x mod 1 := x− [x].
2Let φn be the nth iterate of φ defined inductively by φn = φ

(
φn−1

)
, for n ≥ 1, where

φ0 = identity.
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by definition, the set of states ω that lead to A in one step. Therefore, if we
interpret Ω as an incompressible fluid, the condition P

(
φ−1(A)

)
= P(A) can be

thought of as the rather natural condition of conservation of volume.

Example 2.4. Let Ω = {ω1, . . . , ωn} consist of n ≥ 2 points. let F = 2Ω be the
collection of its subsets, and let φ(ωi) = ωi+1, 1 ≤ i ≤ n− 1, and φ(ωn) = ω1. If
P (ωi) = 1/n, then the transformation φ is measure-preserving.

Example 2.5 (Rotation of the Circle). Let Ω = [0, 1),F = B([0, 1)), P is the
Lebesgue measure, θ ∈ [0, 1) then φ(x) = (x+θ) mod 1 for x ∈ [0, 1) is a measure-
preserving transformation. To see the reason for the name, map [0, 1) into C by
x→ exp(2πix).

Example 2.6. (Ω,F ,P, φ) is called a measure-preserving dynamical system.
Given any random variable X0 taking values in a Polish space (E,B(E)), then
we define X = (Xn)n≥0 by setting

Xn = X0 ◦ φn , for n ≥ 0 .

We claim that X = (Xn)n≥0 is stationary. To check this, let n ≥ 1, B ∈ B(R)n+1,
and k ≥ 1, then

P ((Xk, . . . , Xk+n) ∈ B) = P
(
(X0, . . . , Xn) ◦ φk ∈ B

)
= P

(
φ−k{(X0, . . . , Xn) ∈ B}

)
= P ((X0, . . . , Xn) ◦ ∈ B) .

Thus X is stationary. This example of a stationary sequence is more than an
important example. In fact, it is the only example!

Let X = (Xn)n≥0 be a stationary sequence taking values in a Polish space
(E,B(E)). Consider the distribution of X, i.e., the probability measure PX

on sequence space (EN0 ,B(E)N0). As we konw, projections (πn)n≥0 (that is
πn(ω) = ωn for all ω ∈ EN0) has the same distribution as (Xn)n≥0, in other
words, the identity mapping has the same distribution with X. If we let φ be
the shift operator, i.e.,

φ (ω0, ω1, . . .) = (ω1, ω2, . . .) for ω ∈ EN0 .

115



Then πn(ω) = π0 (φ
nω) for all n ≥ 0 and φ is measure preserving since (Xn)n≥0

is stationary.

We will now give some important definitions. Here and in what follows we
assume that φ is a measure-preserving transformation on (Ω,F ,P).

Definition 2.3. An event A ∈ F is called invariant (under φ ) if φ−1(A) = A

and quasi-invariant if φ−1(A) = A a.s. (i.e., 1φ−1(A) = 1A a.s.). Denote the
σ-algebra of invariant events and quasi-invariant events, respectively, by

I =
{
A ∈ F : φ−1(A) = A

}
and I∗ =

{
A ∈ F : φ−1(A) = A a.s.

}
.

It is easily verified that the classes I and I∗ of invariant or quasi-invariant
events, respectively, are σ-algebras. The following lemma establishes a connection
between invariant and quasi-invariant sets.

Lemma 2.1. If A is an quasi-invariant set, then there is an invariant set B
such that A = B a.s.

Proof. Let B = lim supn φ
−n(A). Then φ−1(B) = lim supn φ

−(n+1)A = B, i.e.,
B ∈ I. It is easily seen that A∆B ⊂ ∪∞

k=0

(
φ−k(A)∆φ−(k+1)(A)

)
. But

P
(
φ−kA∆φ−(k+1)A

)
= P

(
A∆φ−1A

)
= 0

Hence P(A∆B) = 0.

Definition 2.4. The measure-preserving dynamical systerm (Ω,F ,P, φ) is called
ergodic if I is trivial, i.e., every A ∈ I has measure either zero or one. Some-
times, we say the measure-preserving transformation φ is ergodic for short.

Remark 2.3. Firstly, by Lemma 2.1, it’s easy to see that φ is ergodic iff I∗ is
trivial. Secondly, if φ is not ergodic then the space can be split into two sets A
and Ac, each having positive probability, so that φ(A) = A and φ (Ac) = Ac. In
other words, φ is not “irreducible.”
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Lemma 2.2. Let (Ω,F ,P, φ) be a measure-preserving dynamical systerm.

(i) A random variable ξ is I-( I∗-) measurable if and only if X is invariant
(quasi-inavriant), i.e., ξ ◦ φ = ξ (almost surely).

(ii) (Ω,F ,P, φ) is ergodic if and only if any (quasi-)invariant random variable
is almost surely constant.

Proof. (i). The statement is obvious if X = 1A is an indicator function. The
general case, can be inferred by the usual approximation arguments.

(ii). Assume that (Ω,F ,P, φ) is ergodic. Then, for any c ∈ R, we have
{ξ > c} ∈ I and thus P (ξ > c) ∈ {0, 1}. We conclude that

ξ = inf {c ∈ R : P (ξ > c) = 0} a.s..

Assume any I-measurable map is a.s. constant. If A ∈ I, then 1A is I-
measurable and hence a.s. equals either 0 or 1. Thus P(A) ∈ {0, 1}.

To investigate further the meaning of ergodicity, we return to our examples,
renumbering them because the new focus is on checking ergodicity.

Example 2.7 (Rotation of the Circle). Example 2.5 is not ergodic if θ = m/n

where m < n are positive integers. Since if B is a Borel subset of [0, 1/n) and

A =

n−1⋃
k=0

(B +
k

n
)

then A is invariant.

Conversely, if θ is irrational, then φ is ergodic. To prove this, we need a fact
from Fourier analysis. If f is a measurable function on [0,1) with

∫ 1

0
f2(x)dx <∞,

then f can be written as f(x) =
∑

k∈Z cke
2πikx where the equality is in the sense

that as K → ∞,
K∑

k=−K

cke
2πikx → f(x) in L2[0, 1) .

and this is possible for only one choice of the coefficients ck =
∫ 1

0
f(x)e−2πikxdx.

Now
f(φ(x)) =

∑
k∈Z

cke
2πik(x+θ) =

∑
k∈Z

(
cke

2πikθ
)
e2πikx
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The uniqueness of the coefficients ck implies that f(φ(x)) = f(x) if and only
if ck

(
e2πikθ − 1

)
= 0. If θ is irrational, this implies ck = 0 for k 6= 0, so f is

constant. Applying the last result to f = 1A with A ∈ I shows that A = ∅ or
[0,1) a.s.

Definition 2.5. The stationary sequence X = (Xn)n≥0 taking values in a Polish
space (E,B(E)) is called ergodic, if the measure-preserving dynamical systerm
(EN0 ,B(E)N0 ,PX , φ) (from Example 2.6) is ergodic.

Remark 2.4. We can define the ergodic sequence in another way. Let X =

(Xn)n≥0 be a stationary sequence taking values in a Polish space E. A set
A ∈ F is called invariant with respect to X, if there is a set B ∈ B (E)

N0 such
that B = φ−1(B) (recall that φ is the shift operator on EN0) and

A = {(Xn)n≥0 ∈ B} .

The collection of all such invariant sets is a σ-algebra, denoted by IX . Similarly,
we can define I∗

X . Indeed, let I, I∗ be the invariant and quasi-invariant σ-field of
(EN0 ,B(E)N0 ,PX , φ), respectively, then IX = X−1(I) and I∗

X = X−1(I∗). Thus
X is ergodic if and only if IX or I∗

X is trivial.

Proposition 2.3. If X = (Xn)n≥0 is a stationary sequence taking values in a
Polish space E, and g : EN0 → R is measurable. Define Y = (Yn)n≥0 by letting
Yn = g (Xn, Xn+1, . . .). Then Y is stationary and if X is ergodic then so is Y .

Proof. Denote by φ the shift operator on EN0 . Then Yn = g(φn(X)). Define
ψ : EN0 → EN0 ,

x 7→ (g(φn(x)))n≥0 .

Then Y = ψ(X) and φ(Y ) = ψ(φ(X)) since φ◦ψ = ψ◦φ. Since L(X) = L(φ(X)),
we have L(Y ) = L(φ(Y )), i.e., Y is stationary.

We show that IY ⊂ IX . Take any B ∈ I, then {Y ∈ B} = {X ∈ ψ−1(B)}.
It suffices to show that ψ−1(B) ∈ I, which is evident:

φ−1 ◦ ψ−1(B) = ψ−1 ◦ φ−1(B) = ψ−1(B) .

So the desired result follows.
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Example 2.8 (IID Sequence). Let X = (Xn)n∈N0
be i.i.d. random variables

valued in a Polish space E. Then for any invariant set A ∈ IX , and k ∈ N,

A = {(Xn)n≥0 ∈ B} = {(Xn+k)n≥0 ∈ B} ∈ σ (Xk, Xk+1, . . .) .

Thus
A ∈

∞⋂
n=1

σ (Xn, Xn+1, . . .) = T , the tail sigma-field,

so IX ⊂ T . For an i.i.d. sequence, Kolmogorov’s 0-1 law implies T is trivial, so
IX is trivial and the sequence is ergodic.

Example 2.9 (Markov Chains). Suppose that X = (Xn)n≥0 is a Markov chain
on the countable state space S with initial stationary distribution π so that
π(x) > 0 for all x ∈ S. As we konw, all states are (positive) recurrent, and we
can write

S = ∪iRi ,

where the Ri are disjoint irreducible closed sets. If X0 ∈ Ri then with probability
one, Xn ∈ Ri for all n ≥ 1 almost surely, so

{X0 ∈ Ri} ∈ I∗
X .

The last observation shows that if the Markov chain is reducible then the sequence
is not ergodic.

To prove the converse, observe that if A = {X ∈ B} ∈ IX , where B ∈ (2S)N0

so that B = φ−1(B), where φ is the shift operator on SN0 . Then 1A ◦ φn = 1A.
So if we let Fn = σ (X0, . . . , Xn) , the shift invariance of 1A and the Markov
property imply

Eπ (1A|Fn) = Eπ

(
1{X∈B}|Fn

)
= Eπ

(
1{φn(X)∈B}|Fn

)
= h (Xn)

where h(x) = Ex1A for x ∈ S. Lévy’s 0-1 law implies that the left-hand side
converges to 1A as n→ ∞. Since X = (Xn)n≥0 is irreducible and recurrent, then
for any x ∈ S, the righthand side = h(x) i.o., so either h(x) = 0 or h(x) = 1 and
Pπ(A) ∈ {0, 1} almost surely.
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This example also shows that I and T may be different. When the transition
probability p is irreducible I is trivial, but if all the states have period d > 1, T
is not. Since if S0, . . . , Sd−1 is the cyclic decomposition of S, then

T = σ ({X0 ∈ Sr} : 0 ≤ r < d) .

The proof can be found in [2], Theorem 5.7.3.

2.2 Ergodic Theorems

Our basic set up consists of

(Ω,F ,P, φ) a measure-preserving dynamical system,
Xn(ω) = X0 (φ

nω) where X0 is a random variable.

Hence X = (Xn)n≥0 is a stationary real-valued stochastic process. Let S0 = 0

and

Sn =

n−1∑
k=0

Xk

denote the nth partial sum for n ≥ 1. Ergodic theorems are laws of large numbers
for (Sn).

Theorem 2.4 (Individual Ergodic Theorem). Let X0 ∈ L1. Then

Sn

n
=

1

n

n−1∑
k=0

X0 ◦ φk → E (X0|I) a.s.

In particular, if φ is ergodic, then Sn/n→ EX0 a.s..

The result due to Birkhoff is sometimes called the pointwise or individual
ergodic theorem. When the sequence is ergodic, and we take X0 = 1A, it follows
that the asymptotic fraction of time φm ∈ A is P(A).

The proof we give is based on an odd integration inequality due to Yosida and
Kakutani. We follow Garsia. The proof is not intuitive, but none of the steps
are difficult. We start with a preliminary lemma.
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Lemma 2.5 (Maximal Ergodic Lemma). Suppose that X0 ∈ L1. Define Mn =

max {0, S1, . . . , Sn} , n ∈ N. Then

E
(
X01{Mn>0}

)
≥ 0 for every n ∈ N .

Proof. Note tha Mn(φ(ω)) ≥ Sk(φ(ω)), for 1 ≤ k ≤ n, we have

X0 +Mn ◦ φ ≥ X0 + Sk ◦ φ = Sk+1 .

Thus X0 ≥ Sk+1 −Mn ◦ φ for 1 ≤ k ≤ n. Manifestly, S1 = X0 and Mn ◦ φ ≥ 0

and hence also (for k = 0 ) X0 ≥ S1 −Mn ◦ φ. Therefore,

X0 ≥ max {S1, . . . , Sn} −Mn ◦ φ .

Furthermore, we have

{Mn = 0} ⊂ {Mn = 0} ∩ {Mn ◦ φ ≥ 0} ⊂ {Mn −Mn ◦ φ ≤ 0} .

Since φ is measure-preserving, we conclude that

E
(
X01{Mn>0}

)
≥ E

[
(max {S1, . . . , Sn} −Mn ◦ φ) 1{Mn>0}

]
= E

[
(Mn −Mn ◦ φ) 1{Mn>0}

]
≥ E (Mn −Mn ◦ φ) = E (Mn)− E (Mn) = 0 .

We complete the proof.

Proof of Theorem 2.4. By Lemma 2.2, we have

E (X0|I) ◦ φ = E (X0|I) a.s..

Hence, by passing to X̃n := Xn − E (X0|I) , without loss of geneality, we can
assume E (X0|I) = 0. Define

Z := lim sup
n→∞

1

n
Sn .

Let ϵ > 0, we shall show that P(Z > ϵ) = 0. From this we infer P(Z > 0) = 0

and similarly (with −X instead of X ) also lim infn 1
nSn ≥ 0 a.s.. Then we get

the desired result: 1
nSn → 0 a.s..
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Evidently, Z ◦ φ = Z; hence {Z > ϵ} ∈ I. Define

Xϵ
n := (Xn − ϵ) 1{Z>ϵ},

Sϵ
n := Xϵ

0 + . . .+Xϵ
n−1 = (Sn − ϵ) 1{Z>ϵ} ,

M ϵ
n := max {0, Sϵ

1, . . . , S
ϵ
n} .

Then {M ϵ
n > 0} ↑ and

∞⋃
n=1

{M ϵ
n > 0} = {Z > ϵ} .

Dominated convergence yields E
(
Xϵ

01{Mϵ
n>0}

)
→ E

(
Xϵ

01{Z>ϵ}
)
= EXϵ

0. By the
maximal-ergodic lemma (applied to Xϵ), we have

EXϵ
0 = lim

n→∞
E
(
Xϵ

01{Mϵ
n>0}

)
≥ 0 .

However,
E (Xϵ

0) = E
[
(X0 − ϵ) 1{Z>ϵ}

]
= E

[
E (X0|I) 1{Z>ϵ}

]
− ϵP(Z > ϵ)

= 0− ϵP(Z > ϵ) .

We conclude that P(Z > ϵ) = 0.

As a consequence, we obtain the statistical ergodic theorem, or Lp-ergodic
theorem, that was found by von Neumann in 1931 right before Birkhoff proved
his ergodic theorem, but was published only later. Before we formulate it, we
state one more lemma.

Lemma 2.6. Let p ≥ 1 and let X0, X1, . . . . be identically distributed, real random
variables with X0 ∈ Lp. Define Yn :=

∣∣∣ 1n ∑n−1
k=0 Xk

∣∣∣p for n ∈ N. Then (Yn)n∈N is
uniformly integrable.

Proof. Evidently, the singleton {|X0|p} is uniformly integrable. Hence, there
exists a monotone increasing convex map f : [0,∞) → [0,∞) with f(x)

x → ∞ for
x→ ∞ and E [f (|X0|p)] <∞. It is enough to show that

sup
n∈N

E [f (Yn)] <∞ .
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By Jensen’s inequality (for x 7→ |x|p) , we have

Yn ≤ 1

n

n−1∑
k=0

|Xk|p

Again, by Jensen’s inequality (now applied to f ), we get that

f (Yn) ≤ f

(
1

n

n−1∑
k=0

|Xk|p
)

≤ 1

n

n−1∑
k=0

f (|Xk|p)

Hence E [f (Yn)] ≤ 1
n

∑n−1
k=0 E [f (|Xk|p)] = E [f (|X0|p)] for all n ∈ N.

Corollary 2.7 (Lp-Ergodic Theorem). Let p ≥ 1 and X0 ∈ Lp, then

Sn

n
=

1

n

n−1∑
k=0

Xk → E (X0|I) in Lp .

In particular, if φ is ergodic, then Sn

n → EX0 in Lp.

Proof. Although this follows trivially from Lemma 2.6, we shall give a direct
proof. We have to show that∥∥∥∥∥ 1n

n−1∑
k=0

Xk − E (X0|I)

∥∥∥∥∥
p

→ 0 .

Let M > 0 be a large real numbers. We will truncate Xn at level M : Define X ′
n =

Xn1{|Xn|≤M} for all n. Clearly we have X ′
n = X ′

0 ◦ φn. Let X ′′
n = Xn1{|Xn|>M}.

Using the inequality |x+ y|p ≤ 2p−1|x|p + |y|p for x, y ∈ R, we have∥∥∥∥∥ 1n
n−1∑
k=0

Xk − E (X0|I)

∥∥∥∥∥
p

≤

∥∥∥∥∥ 1n
n−1∑
k=0

X ′
k − E (X ′

0|I)

∥∥∥∥∥
p

+
1

n

n−1∑
k=0

∥∥X ′′
0 ◦ φk

∥∥
p
+ ‖E (X ′′

0 |I)‖p .

It follows from the individual ergodic theorem and the bounded convergence
theorem that ∥∥∥∥∥ 1n

n−1∑
k=0

X ′
k − E (X ′

0|I)

∥∥∥∥∥
p

→ 0 .
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On the other hand, for each k,∥∥X ′′
0 ◦ φk

∥∥
p
= ‖X ′′

0 ‖p =
∥∥X01{|X0|>M}

∥∥
p
,

and by Jensen’s inequality |E(X ′′
0 |I)|p ≤ E(|X ′′

0 |p|I), so

‖E (X ′′
0 |I)‖p ≤ ‖X ′′

0 ‖p =
∥∥X01{|X0|>M}

∥∥
p
.

Thus,

lim sup
n→∞

∥∥∥∥∥ 1n
n−1∑
k=0

Xk − E (X0|I)

∥∥∥∥∥
p

≤ 2
∥∥X01{|X0|>M}

∥∥
p
.

Letting M → ∞, the desired result follows.

Corollary 2.8 (Ergodic Theorem for Stationary Sequence). Let ξ = (ξn)n≥0 be
a stationary random sequence with ξ0 ∈ Lp where p ≥ 1. Then

lim
n→∞

1

n

n−1∑
k=0

ξk = E (ξ0|Iξ) a.s. and in Lp .

Proof. It follows evidently from the individual ergodic theorem that 1
n

∑n−1
k=0 ξk

converges a.s. and in Lp. We have only to show that if the random variable η is
the limit (a.s. and in Lp) of 1

n

∑n
k=1 ξk, then it can be taken equal to E (ξ0|Iξ) .

To this end, notice that we can set

η(ω) = lim sup
n→∞

1

n

n∑
k=1

ξk(ω) , for ω ∈ Ω .

It follows from the definition of limsup that for the random variable η(ω) so
defined, the sets {η < y} ∈ Iξ, for y ∈ R, and therefore η is Iξ-measurable. We
shall show that for any A ∈ Iξ,

E(η1A) = E(ξ01A) .

Then the desired result follows.
By the Lp convergence, we have

1

n

n−1∑
k=0

E(ξk1A) → E(η1A) .
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Assume B ∈ B (R)N0 is invariant (under the shift operator φ) such that A =

{(ξn)n≥0 ∈ B} = {(ξn+k)n≥0 ∈ B} for all k ≥ 0. Then since ξ is stationary,

E (ξk1A) = E
(
ξk1{(ξn+k)n≥0∈B}

)
= E

(
ξ01{(ξn)n≥0∈B}

)
= E (ξ01A) .

Hence it follows that η = E(ξ0|Iξ). Moreover, as we can see, E(ξk|Iξ) = E(ξ0|Iξ)
for all k ≥ 1.

A Examples

Our next step is to see what ergodic theorems says about our examples.

Example 2.10 (IID Sequence). Since I is trivial, the ergodic theorem implies
that

1

n

n−1∑
m=0

Xm → EX0 a.s. and in L1

The a.s. convergence is the strong law of large numbers.

Remark 2.5. We can prove the L1 convergence in the law of large numbers without
invoking the ergodic theorem. By SLLN and monotone convergence theorem,

E
1

n

n−1∑
m=0

X+
m → EX+

0 ; E
1

n

n−1∑
m=0

X−
m → EX−

0 .

Convergence of the L1-norm and almost surely convergence imply the convergence
in L1.

Example 2.11 (Markov Chain). Let X = (Xn)n≥0 be an irreducible Markov
chain on a countable state space S with initial stationary distribution π. Let f
be a function on S with ∑

x∈S

|f(x)|π(x) <∞

In Example 2.9 we showed that IX is trivial, note that Eπ|f(X0)| < ∞, so
applying the ergodic theorem gives

1

n

n−1∑
m=0

f (Xm) →
∑
x∈S

f(x)π(x) Pπ-a.s. and in L1(Pπ) .

125



Recall that in the course of Markov chain, we have shown that the ergodic theorem
holds for X under Px, given any x ∈ S, although X can be not stationary under
Px.

Example 2.12. Let P and P̃ be probability measures on the measurable space
(Ω,F), and let (Ω,F ,P, φ) and (Ω,F , P̃, φ) be ergodic. Then either P = P̃ or
P ⊥ P̃.

Indeed, if P 6= P̃, then there exists an random variable X0 with |X0| ≤ 1 and∫
X0 dP 6=

∫
X0 dP̃. However, by individual ergodic theorem,

1

n

n−1∑
k=0

X0 ◦ φk n→∞−→

{ ∫
X0 dP P -a.s.∫
X0 dP̃ P̃ -a.s.

If we define

A =

{
1

n

n−1∑
k=0

X0 ◦ φk →
∫
X0 dP

}
,

then P(A) = 1 and P̃(A) = 0, Thus P ⊥ P̃.

Example 2.13 (Rotation of the Circle). Suppose that θ ∈ (0, 1) is irrational,
so that by a result in Example 2.7 I is trivial. If we set X0(ω) = 1A(ω), with
A ∈ B([0, 1)), then the ergodic theorem implies

1

n

n−1∑
m=0

1A(φ
mω) → λ(A) , λ-a.s. ω ,

where λ denotes the Lebesgue measure. The last result for ω = 0 is usually
called Weyl’s equidistribution theorem, although Bohl and Sierpinski should also
get credit.

To recover the number theoretic result, we will now show that:

Theorem. If A = [a, b) then the exceptional set is ∅.

To see this, let Ak = [a + 1/k, b − 1/k). If b − a > 2/k, the ergodic theorem
implies

1

n

n−1∑
m=0

1Ak
(φmω) → b− a− 2

k
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for ω ∈ Ωk with λ (Ωk) = 1. Let G = ∩kΩk, where the intersection is over integers
k with b − a > 2/k. λ(G) = 1 so G is dense in [0, 1). If x ∈ [0, 1) and ωk ∈ G

with |ωk − x| < 1/k, then φmωk ∈ Ak implies φmx ∈ A, so

lim inf
n→∞

1

n

n−1∑
m=0

1A (φmx) ≥ b− a− 2

k

for all large enough k. Noting that k is arbitrary and applying similar reasoning
to Ac shows

1

n

n−1∑
m=0

1A (φmx) → b− a .

Example 2.14 (Benford’s Law). As Gelfand first observed, the equidistribu-
tion theorem says something interesting about 2m. Let θ = log10 2,and Ak =

[log10 k, log10(k + 1)) where 1 ≤ k ≤ 9. Taking x = 0 in the last result, we have

1

n

n−1∑
m=0

1Ak
(mθ mod 1) → log10

(
k + 1

k

)
.

A little thought reveals that the first digit of 2m = 10mθ is k if and only if mθ
mod 1 ∈ Ak, thus

1

n

n−1∑
m=0

1{the first digit of 2m is k} → log10
(
k + 1

k

)
.

The numerical values of the limiting probabilities are

1 2 3 4 5 6 7 8 9

.3010 .1761 .1249 .0969 .0792 .0669 .0580 .0512 .0458

The limit distribution on {1, . . . , 9} is called Benford’s (1938) law, although it
was discovered by Newcomb (1881). As Raimi (1976) explains, in many tables
the observed frequency with which k appears as a first digit is approximately
log10((k + 1)/k). Some of the many examples that are supposed to follow Ben-
ford’s law are: census populations of 3259 counties, 308 numbers from Reader’s
Digest, areas of 335 rivers, 342 addresses of American Men of Science. The next
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table compares the percentages of the observations in the first five categories to
Benford’s law:

1 2 3 4 5

Census 33.9 20.4 14.2 8.1 7.2

Reader’s Digest 33.4 18.5 12.4 7.5 7.1

Rivers 31.0 16.4 10.7 11.3 7.2

Benford’s Law 30.1 17.6 12.5 9.7 7.9

Addresses 28.9 19.2 12.6 8.8 8.5

The fits are far from perfect, but in each case Benford’s law matches the general
shape of the observed distribution. The IRS and other government agencies
use Benford’s law to detect fraud. When records are made up the first digit
distribution does not match Benford’s law.

2.3 Applications

A Recurrence of Random Walks

In this section, we will study the recurrence properties of stationary sequences.
Our first result is an application of the ergodic theorem. Let X = (Xn)n∈N be a
stationary sequence taking values in Rd. Let Sn = X1 + · · · +Xn, and S0 = 0.
let T 0 = 0 and T j = {n > T j−1 : Sn = 0}. Then

{T 1 = ∞} = {Sn 6= 0 for all n ≥ 1}

be the event of an “escape” from 0. Let

Rn = |{S1, . . . , Sn}|

denote the range of S = (Sn)n≥1; that is, the number of points visited from time
1 to time n.

Lemma 2.9. As n→ ∞, Rn/n→ P
(
T 1 = ∞|IX

)
a.s.

128



Proof. Suppose X = (Xn)n∈N be the canonical process, that is (Ω,F ,P) =

(
(
Rd
)N
,B
(
Rd
)N
,P) with Xn(ω) = ωn for ω ∈

(
Rd
)N. Denote by φ the shift

operator on (Rd)N. Now, (Ω,F ,P, φ) is a typically measure-preserving dynami-
cal systerm. Firstly, note that

Rn =

n∑
k=1

1{Sk ̸=Sl for all k<l≤n} ≥
n∑

k=1

1{Sk ̸=Sl for all l>k}

=

n∑
k=1

1{Sl−Sk ̸=0 for all l>k} =

n∑
k=1

1{T 1=∞} ◦ φk .

Birkhoff’s ergodic theorem yields

lim inf
n→∞

Rn

n
≥ P(T 1 = ∞|I) a.s.

For the converse inequality, note that for every n ≥ m,

Rn =

n∑
k=1

1{Sk ̸=Sl for all k<l≤n} ≤
n−m∑
k=1

1{Sl ̸=Sk for all k<l≤n} +m

≤
n−m∑
k=1

1{Sl−Sk ̸=0 for all k<l≤k+m} +m =

n−m∑
k=1

1{T 1>m} ◦ φk +m.

Again, by the individual ergodic theorem,

lim sup
n→∞

Rn

n
≤ P

(
T 1 > m|I

)
a.s..

Since
{
T 1 > m

}
↓
{
T 1 = ∞

}
, by domainted convergence theorem for conditional

expection, we have P
(
T 1 > m|I

)
→ P

(
T 1 = ∞|I

)
. Thus

Rn

n
→ P

(
T 1 = ∞|I

)
a.s..

Finally, suppose X is not the canonical process. by the proof above, Rn/n

converges almost surely. Let

ξ(ω) := lim sup
n→∞

Rn(ω)

n
, for ω ∈ Ω .

Then Rn/n → ξ a.s. and in L1 (since Rn/n ≤ 1), it suffices to show that
ξ = P(T 1 = ∞|IX) a.s., i.e.,

E ξ1A = P(A ∩ {T 1 = ∞}) , for A ∈ IX .
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Consider the canonical process: X̃ = (X̃n) on measure-preserving dynamical
systerm (

(
Rd
)N
,B
(
Rd
)N
,PX , φ), where φ is the shift operator. Let R̃n and T̃ 1

be defined as Rn and T 1, respectively. Then

{T 1 = ∞} = {X ∈ {T̃ 1 = ∞}} .

Take any A = {X ∈ Ã} ∈ IX , where Ã ∈ I, then

E ξ1A = lim
n→∞

E
(Rn

n
1{X∈Ã}

)
= lim

n→∞

∫
Ã

R̃n

n
dPX =

∫
Ã

PX(T̃ 1 = ∞|I) dPX

= PX({T̃ 1 = ∞} ∩ Ã) = P(A ∩ {T1 = ∞}) .

We complete the proof.

From Lemma 2.9, we get a result about the recurrence of random walks with
stationary increments that is (for integer valued random walks) a generalization
of the Chung-Fuchs theorem : a random walk on Z with centered increments is
recurrent.

Theorem 2.10. Let X = (Xn)n≥1 be an integer-valued, integrable, stationary
sequence. Let Sn = X1 + · · · +Xn and S0 = 0. If E (X1|IX) = 0, then P(T 1 <

∞) = 1. Moreover, P (Sn = 0 i.o.) = 1.

Remark 2.6. In other words, mean zero implies recurrence. The condition

E (X1|IX) = 0

is needed to rule out trivial examples that have mean 0 but are a combina-
tion of a sequence with positive and negative means, e.g., P (Xn = 1 for all n) =
P (Xn = −1 for all n) = 1/2.

Proof. Step 1. If E (X1|I) = 0 then the ergodic theorem implies Sn/n → 0 a.s.
Thus

lim
n→∞

1

n
max

1≤k≤n
|Sk| = 0 .

Note that
Rn ≤ max

1≤k≤n
Sk − min

1≤k≤n
Sk + 1 ≤ 2 max

1≤k≤n
|Sk|+ 1 ,
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we have Rn/n→ 0 and Lemma 2.9 implies P(T 1 = ∞) = 0.

Step 2. For n ≥ 0, define

ζn := inf {m ≥ 1 : Sm+n − Sn = 0} , Bn := {ζn <∞} and B =

∞⋂
n=0

Bn .

Observe that ζ0 = T 1, we have P (ζ0 <∞) = 1. By stationarity, P (ζn <∞) = 1

for every n ≥ 0. Hence P(B) = 1.

Note that Tn = Tn−1 + ζTn−1 for n ≥ 1, where Tn is the time of the nth
return of (Sn)n≥0 to the origin. On B we have Tn < ∞ for every n ≥ 0 and
hence

P (Sn = 0 i.o. ) = P (Tn <∞ for all n ≥ 1) ≥ P(B) = 1 .

If in Theorem 2.10 the random variables Xn are not integer-valued, then
there is no hope that Sn = 0 for any n ∈ N with positive probability. On the
other hand, in this case, there is also some kind of recurrence property, namely
Sn/n → 0 almost surely by the ergodic theorem. Note, however, that this does
not exclude the possibility that Sn → ∞ with positive probability; for instance,
if Sn grows like

√
n. The next theorem shows that if the (Xn)n≥1 are integrable,

then the process of partial sums can go to infinity only with a linear speed.

Theorem 2.11. Let (Xn)n∈N be an integrable stationary ergodic process and
define Sn = X1 + . . . + Xn for n ∈ N0. Then the following statements are
equivalent.

(i) P (Sn → ∞) > 0 , (ii) Sn → ∞ a.s., (iii) Sn

n
→ EX1 > 0 a.s..

Proof. Trivially, (iii) ⇒ (ii) ⇒ (i).

(i) ⇒ (ii). Note that {Sn → ∞} is an invariant event and thus has probability
either 0 or 1.

(ii) ⇒ (iii). The convergence follows by the individual ergodic theorem.
Hence, it is enough to show that

lim
n→∞

Sn

n
> 0 a.s..
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Let S− := inf {Sn : n ∈ N0} . By assumption (ii), we have S− > −∞ almost
surely and τ := sup {n ∈ N0 : Sn = S−} is finite almost surely. Hence there is an
constant N ∈ N with P(τ ≤ N) ≥ 1/2. For n ≥ 0 and ε ≥ 0, let

Aε
n := {Sm > Sn + ε for all m > n} ,

Since (Xn)n≥1 is stationary, we have P(Aε
n) = Aε

0. Observe that

P(τ < N) = P

(
N−1⋃
n=0

A0
n

)
≥ 1

2
.

Since Aε
n ↑ A0

n for fixed n as ε ↓ 0, there is an ϵ > 0 with

p := P (Aϵ
0) ≥

1

4N
> 0.

By Proposition 2.3, as (Xn)n≥1 is ergodic,
(
1Aϵ

n

)
n≥0

is also ergodic. By the
individual ergodic theorem, we conclude that

1

n

n−1∑
i=0

1Aϵ
n
→ p a.s..

Hence there exists an n0 = n0(ω) such that
∑n−1

i=0 1Aϵ
n
≥ pn

2 for all n ≥ n0. This
implies Sn ≥ pnϵ

2 for n ≥ n0 and hence

EX1 = lim
n→∞

Sn

n
≥ p

2
ϵ > 0 .

B Recurrence of Stationary Sequence

Extending the reasoning in the proof of Theorem 2.10 gives a result about
recurrence of stationary sequence. Let X0, X1, . . . be a stationary sequence
taking values in (E,B(E)). Let A ∈ B(E), let T 0 = 0, and for n ≥ 1, let
Tn = inf

{
m > Tn−1 : Xm ∈ A

}
be the time of the n th return to A. Let

σn = Tn − Tn−1 length of the nth excursion to A.

However, we give a useful lemma first, which can be proved easily by Kol-
mogorov’s consistency theorem.
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Lemma 2.12. Let X = (Xn)n≥0 be a stationary sequence takeing values in
(E,B(E)). Then X can be extended to a stationary process X̃ =

(
X̃n

)
n∈Z

.

Theorem 2.13 (Recurrence, mean return time). If P
(
σ1 <∞ | X0 ∈ A

)
= 1.

Then
(σn)n≥1 conditional on {X0 ∈ A}

is a stationary sequence. Particularly, P(Xn ∈ A i.o. |X0 ∈ A) = 1. If, in
addition, P(σ1 <∞) = 1, then

E
(
σ1|X0 ∈ A

)
=

1

P (X0 ∈ A)
.

Remark 2.7. If (Xn)n≥0 is an irreducible Markov chain on a countable state space
S starting from its stationary distribution π, and A = {x}, then Theorem 2.13
says Ex Tx = 1/π(x). Theorem 2.13 extends that result to an arbitrary A ⊂ S

and drops the assumption that (Xn)n≥0 is a Markov chain.

Proof. We first show that under P (·|X0 ∈ A), (σn)n≥1 is stationary. It suffices
to show that for any n ≥ 1 and m1, · · ·mn ∈ N,

P
(
σ1 = m1, · · · , σn = mn|X0 ∈ A

)
= P

(
σ2 = m1, · · · , σn+1 = mn|X0 ∈ A

)
Our first step is to extend (Xn)n≥0 to a two-sided stationary sequence (Xn)n∈Z.
Then observe that

P
(
X0 ∈ A, σ2 = m1, · · · , σn+1 = mn

)
=

∞∑
k=1

P
(
X0 ∈ A, σ1 = k, σ2 = m1, · · · , σn+1 = mn

)
=

∞∑
k=1

P
(
σ̂1 = −k,X0 ∈ A, σ1 = m1, · · · , σn = mn

)
,

where σ̂1 := sup{j < 0 : Xj ∈ A}. Note that for any k ∈ N,

P(σ̂1 = −k,X0 ∈ A) = P(X−k ∈ A,X−k+1 /∈ A, · · · , X−1 /∈ A,X0 ∈ A)

= P(X0 ∈ A,X1 /∈ A, · · ·Xk−1 /∈ A,Xk ∈ A)

= P(X0 ∈ A, σ1 = k) .
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So P(σ̂1 > −∞|X0 ∈ A) = 1 and hence

P
(
X0 ∈ A, σ2 = m1, · · · , σn+1 = mn

)
= P

(
X0 ∈ A, σ1 = m1, · · · , σn = mn

)
.

Firstly, we can see that P(σn < ∞|X0 ∈ A) = 1 for all n ≥ 1. Secondly, the
desired stationarity property holds.

To complete the proof, we compute

E
(
σ1|X0 ∈ A

)
=

∞∑
k=1

P
(
σ1 ≥ k|X0 ∈ A

)
=

1

P (X0 ∈ A)

∞∑
k=1

P
(
σ1 ≥ k,X0 ∈ A

)
=

1

P (X0 ∈ A)

∞∑
k=1

P (X0 ∈ A,X1 /∈ A, · · · , Xk−1 /∈ A)

=
1

P (X0 ∈ A)

∞∑
k=1

P (X−k ∈ A,X−k+1 /∈ A, · · · , X−1 /∈ A)

=
1

P (X0 ∈ A)

∞∑
k=1

P (σ̂1 = −k) .

We show that if P(σ1 < ∞) = 1, then P(σ̂1 > −∞) = 1 and the desired result
follows. To see this, note that

P(σ̂1 < −k) = P(X−k /∈ A, · · · , X−1 /∈ A)

= P(X1 /∈ A, · · · , Xk /∈ A) = P(σ1 > k) .

We complete the proof.

Remark 2.8. In fact we have a stronger conclusion: if P
(
σ1 <∞

)
= 1 and B ⊂ E

so that A ∩B = ∅, then

E

 ∑
1≤m≤T1

1{Xm∈B} | X0 ∈ A

 =
P (X0 ∈ B)

P (X0 ∈ A)
.

When A = {x} and Xn is a Markov chain, this is the “cycle trick” for defining a
stationary measure.
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2.4 A Subadditive Ergodic Theorem

In this section we will prove Liggett’s version of Kingman’s subadditive ergodic
theorem.

Theorem 2.14 (Subadditive Ergodic Theorem). Suppose {Xm,n : 0 ≤ m < n}
satisfies:

(i) X0,n ≤ X0,m +Xm,n for all 0 < m < n.

(ii) For each k ∈ N,
(
Xnk,(n+1)k

)
n≥1

is a stationary sequence.

(iii) The distribution of (Xm,m+k)k≥1 does not depend on m.

(iv) EX+
0,1 <∞ and for each n, EX0,n ≥ Cn, where C is a constant.

Then there exists Γ ∈ L1 so that

X0,n

n
→ Γ a.s. and in L1 .

Moreover,
EX = lim

n→∞
E
X0,n

n
= γ := inf

n≥1
E
X0,n

n
.

If all the stationary sequences in (ii) are ergodic then X = γ a.s.

Remark 2.9. Kingman assumed (iv), but instead of (i)-(iii) he assumed that
Xℓ,n ≤ Xℓ,m +Xm,n for all ℓ < m < n and that the distribution of

{Xm+k,n+k, 0 ≤ m < n}

does not depend on k. In two of the four applications in the next, these stronger
conditions do not hold.

Before giving the proof, which is somewhat lengthy, we will consider several
examples for motivation. The first example shows that Theorem 2.14 contains
Birkhoff’s ergodic theorem as a special case.
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Example 2.15 (Stationary Sequence). Suppose ξ1, ξ2, . . . is a integrable station-
ary sequence and let Xm,n := ξm+1+· · ·+ξn for all 0 ≤ m < n. Then by Theorem
2.14, we get the individual ergodic theorem.

Example 2.16 (Range of Random Walk). Suppose ξ1, ξ2, . . . is a stationary
sequence and set Sn = ξ1 + · · · + ξn. Let Xm,n = |{Sm+1, . . . , Sn}| for all 0 ≤
m < n. Applying Theorem 2.14 now gives X0,n/n → Γ a.s. and in L1, but it
does not tell us what the limit is.

Example 2.17 (Longest Common Subsequences). Given two ergodic stationary
sequences (ξn)n≥1 and (ηn)n≥1. For 0 ≤ m < n, let Lm,n = max{K : ξik =

ηjk for 1 ≤ k ≤ K, where m < i1 < . . . < iK ≤ n and m < j1 < . . . < jK ≤ n}.
It is clear that

L0,m + Lm,n ≤ L0,n .

SoXm,n = −Lm,n is subadditive. Applying Theorem 2.14 to {Xm,n : 0 ≤ m < n}
now, we conclude that

L0,n

n
→ γ = sup

m≥1
E
L0,m

m
.

The examples above should provide enough motivation for now. In the next
subsection, we will give four more applications of Theorem 2.14.

Proof of Theorem 2.14. Let

X = lim sup
n→∞

X0,n

n
, X = lim inf

n→∞

X0,n

n
.

The proof will be broken up into four steps:

1. We check that E |X0,n| ≤ C ′n for some constant C ′ > 0. Let γn = EX0,n,
then

lim
n→∞

γn
n

= γ := inf
n≥1

γn
n

2. EX ≤ γ, and if for each k ∈ N,
(
Xnk,(n+1)k

)
n≥1

is are stationary ergodic
sequence, then X ≤ γ a.s.

3. EX ≥ γ. This is the “difficult half” according to Kingman.
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4. X0,n/n converges to X = Γ a.s. and in L1.

Step 1. The first thing to check is that E |X0,n| ≤ Cn. To do this, we note that
(i) implies

X+
0,n ≤ X+

0,m +X+
m,n .

Repeatedly using the last inequality and invoking (iii) gives EX+
0,n ≤ nEX+

0,1.
Since |x| = 2x+ − x, it follows from (iv) that

E |X0,n| ≤ 2EX+
0,n − EX0,n ≤ C ′n <∞ .

Note that (i) and (iii) imply that

γm+n ≤ γm + γn , for all m,n ≥ 1 .

Define γ by
γ = inf

n≥1

γn
n
,

which is finite by (iv). Fix an m ≥ 1 and write n = km + l, where 0 ≤ l < m.

Thus we have
γn ≤ kγm + γl .

As n→ ∞, n/k → m, so that

lim sup
n→∞

γn
n

≤ γm
m

.

since m is arbitrary, we conclude that

γ ≤ lim inf
n→∞

1

n
γn ≤ lim sup

n→∞

1

n
γn ≤ γ .

Step 2. Fix an m ≥ 1. Dividing by n = km + ℓ (0 ≤ ℓ < m), making repeated
use of (i), we get

X0,n ≤
k∑

j=1

X(j−1)m,jm +Xkm,n .

Thus
X0,n

n
≤ k

n
· 1

k

k∑
j=1

X(j−1)m,jm +
Xkm,n

n
. (2.2)
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On the one hand, using (ii) and the ergodic theorem now gives that, as n→ ∞,

1

k

k∑
j=1

X(j−1)m,jm → Γm a.s. and in L1 ,

with EΓm = γm. If in addition
(
Xnk,(n+1)k

)
n≥1

is ergodic, then we can choose
Γm = γm. On the other hand, we shall show that

Xkm,n

n
→ 0 a.s..

It suffices to show that for any given ϵ > 0,

P(|Xkm,n| > nϵ i.o.) = 0 .

We compute
∞∑

n=1

P(|Xkm,n| > nϵ) =

∞∑
n=1

P(|X0,ℓ| > nϵ)

≤
∞∑

n=1

P
(

max
1≤ℓ<m

|X0,ℓ| > nϵ
)
<∞ ,

since E max
1≤ℓ<m

|X0,ℓ| <∞. Letting n to infty in (2.2), we get

X ≤ Γm

m
and hence EX ≤ γm

m
.

Taking the infimum over m, we have EX ≤ γ. Note that if all the stationary
sequences in (ii) are ergodic, we have X ≤ γ.

Remark 2.10. If (i)-(iii) hold, EX+
0,1 < ∞, and infEX0,m/m = −∞, then it

follows from the last argument that as X0,n/n→ −∞ a.s..

Step 3. For each m ≥ 1, let

Xm := lim inf
n→∞

Xm,m+n

n
.

(i) implies
X0,m+n ≤ X0,m +Xm,m+n
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Dividing both sides by n and letting n → ∞ gives X ≤ Xm a.s. However, (iii)
implies that Xm and X have the same distribution so

X = Xm a.s..

Let ϵ > 0 and let Z = ϵ+ (X ∨ −M). Clearly, E|Z| <∞. Let

Ym,n = Xm,n − (n−m)Z for all 0 ≤ m < n .

Then {Ym,n} satisfies (i)−(iv), since Zm,n = −(n−m)Z does, and has

Y ≡ lim inf
n→∞

Y0,n
n

= X − Z ≤ −ϵ . (2.3)

Let Tm = inf {n ≥ 1 : Ym,m+n ≤ 0} 3, (iii) implies Tm
law
= T0 and

E
(
Ym,m+11{Tm>N}

)
= E

(
Y0,11{T0>N}

)
.

(2.3) implies that P (T0 <∞) = 1, thus we can pick N large enough so that

E
(
Y0,11{T0>N}

)
≤ ϵ .

We truncate Tm by N : Let

Sm = Tm1{Tm≤N} + 1{Tm>N} .

Note that Y (m,m+ Tm) ≤ 0, and on {Tm > N}, Y (m,m+ Sm) = Ym,m+1 > 0,
we have

Y (m,m+ Sm) ≤ Ym,m+11{Tm>N} .

Let R0 = 0, and for k ≥ 1, let Rk = Rk−1 + S (Rk−1). For given n, let K =

max {k : Rk ≤ n} . From (i), it follows that

Y (0, n) ≤ Y (R0, R1) + · · ·+ Y (RK−1, RK) + Y (RK , n)

since n−RK ≤ S(RK) ≤ N, we have

Y0,n ≤
n−1∑
m=0

Ym,m+11{Tm>N} +

N∑
j=1

|Yn−j,n−j+1| ,

3This is not a stopping time but there is nothing special about stopping times for a stationary
sequence!
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here we have used (i) on Y (RK , n). Dividing both sides by n, taking expected
values, and letting n→ ∞ gives

lim sup
n→∞

EY0,n
n

≤ E (Y0,11T0>N ) ≤ ϵ .

It follows from (a) and the definition of Y0,n that

γ = lim
n→∞

EX0,n

n
≤ 2ϵ+ E(X ∨ −M) .

Since ϵ ≥ 0 and M are arbitrary, it follows that EX ≥ γ.

Step 4. It only remains to prove convergence in L1. Let

Γ = inf
m≥1

Γm

m
.

By step 2 and Step 1, we have X ≤ Γ and EΓ ≤ γ. By Step 3,

γ ≤ EX ≤ EX ≤ EΓ ≤ γ .

Thus we have X0,n/n → Γ almost surely. To show the convergence in L1, ob-
serving that |z| = 2z+ − z , we can write

E
∣∣∣∣X0,n

n
− Γ

∣∣∣∣ = 2E
(
X0,n

n
− Γ

)+

− E
(
X0,n

n
− Γ

)
≤ 2E (X0,n/n− Γ)

+
,

since E (X0,n/n) = E (Γn/n) ≥ EΓ. Using the trivial inequality (x + y)+ ≤
x+ + y+ and noticing Γm ≥ Γ now gives

E
(
X0,n

n
− Γ

)+

≤ E
(
X0,n

n
− Γm

m

)+

+ E
(
Γm

m
− Γ

)
As we can see the second term is small if m is large. To bound the other term,
observe that (i) implies

E
(
X0,n

n
− Γm

m

)+

≤ E

 1

n

k∑
j=1

X(j−1)m,jm − Γm

m

+

+ E
(
X(km, n)

n

)+

,
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where n = km + ℓ with 0 ≤ ℓ < m. The second term tends to 0 as n → ∞. For
the first, the ergodic theorem implies

E

∣∣∣∣∣∣ 1n
k∑

j=1

X(j−1)m,jm − Γm

m

∣∣∣∣∣∣→ 0 ,

so the proof of Theorem 2.14 is complete.

A Applications

In this subsection, we will give three applications of our subadditive ergodic
theorem. These examples are independent of each other and can be read in any
order. In Example 2.19 we encounter situations to which Liggett’s version applies
but Kingman’s version does not.

Example 2.18 (First Passage Percolation). Consider Zd as a graph with edges
connecting each x, y ∈ Zd with |x − y| = 1. Assign an independent nonnegative
random variable τ(e) to each edge that represents the time required to traverse
the edge going in either direction. If e is the edge connecting x and y, let τ(x, y) =
τ(y, x) = τ(e). If x = x0, x1, · · · , xn = y is a path from x to y, i.e., a sequence
with |xm − xm−1| = 1 for 1 ≤ m ≤ n we define the travel time for the path to be
τ (x0, x1) + · · ·+ τ (xn−1, xn) Define the passage time from x to y, T (x, y) = the
infimum of the travel times over all paths from x to y. Let Xm,n = T (mu, nu)

where u = (1, 0, . . . , 0) ∈ Zd.

Clearly X0,n ≤ X0,m+Xm,n and X0,n ≥ 0, so if Eτ(x, y) <∞ then (iv) holds,
and Theorem 2.14 implies that X0,n/n→ Γ a.s. To see that the limit is constant,
enumerate the edges in some order e1, e2, . . . and observe that Γ is measurable
with respect to the tail σ-field of the i.i.d. sequence (τ (ei)).

Example 2.19 (Age-Dependent Branching Processes). This is a variation of the
branching process introduced in which each individual lives for an amount of
time with distribution F before producing k off spring with probability pk. The
description of the process is completed by supposing that the process starts with
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one individual in generation 0 who is born at time 0, and when this particle dies,
its offspring start independent copies of the original process.

Suppose p0 = 0, let X0,m be the birth time of the first member of generation
m, and let Xm,n be the time lag necessary for that individual to have an offspring
in generation n. In case of ties, pick an individual at random from those in
generation m born at time X0,m. It is clear that X0,n ≤ X0,m + Xm,n. since
X0,n ≥ 0, (iv) holds if we assume F has finite mean. Applying 2.14 now, it
follows that

X0,n

n
→ γ a.s..

The limit is constant because the sequences
{
Xnk,(n+1)k, n ≥ 0

}
are i.i.d. hence

ergodic. As usual, one has to use other methods to identify the constant.

Remark 2.11. The inequality Xℓ,n ≤ Xℓ,m +Xm,n is false when ℓ > 0, because if
we call im the individual that determines the value of Xm,n for n > m then im

may not be a descendant of iℓ.
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Chapter 3

Brownian Motion

Brownian movement is the name given to the irregular movement of pollen, sus-
pended in water, observed by the botanist Robert Brown in 1828. This random
movement, now attributed to the buffeting of the pollen by water molecules,
results in a dispersal or diffusion of the pollen in the water. The range of applica-
tion of Brownian motion as defined here goes far beyond a study of microscopic
particles in suspension and includes modeling of stock prices, of thermal noise in
electrical circuits, of certain limiting behavior in queueing and inventory systems,
and of random perturbations in a variety of other physical, biological, economic,
and management systems.

Why we study it? There are many answers to this question, but to us there
seem to be four main ones:

• Virtually every interesting class of processes contains Brownian motion :
Brownian motion is a continuous martingale, a Markov process, a diffusion,
a Gaussian process, a Levy process,...;

• Brownian motion is sufficiently concrete that one can do explicit calcula-
tions, which are impossible for more general objects;

• Brownian motion can be used as a building block for other processes (indeed,
a number of the most important results on Brownian motion state that the
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most general process in a certain class can be obtained from Brownian
motion by some sequence of transformations);

• last but not least, Brownian motion is a rich and beautiful mathematical
object in its own right.

3.1 Fundamentals

Brownian motion is a process of tremendous practical and theoretical significance.
The first thing is to define Brownian motion.

Definition 3.1. A real-valued process {Bt}t≥0 defined on some probability space
(Ω,F ,P) is called a standard, one-dimensional Brownian motion if the
following holds.

(i) Almost surely, B0 = 0.

(ii) The process has independent increments, that is, for any given times 0 ≤
t1 < t2 < · · · < tn <∞ the increments

B (tn)−B (tn−1) , B (tn−1)−B (tn−2) , · · · , B (t2)−B (t1)

are independent random variables.

(iii) The process has stationary increments, that is, for all t ≥ 0 and h > 0, the
increments B(t+h)−B(t) are normally distributed with expectation 0 and
variance h.

(iv) For every ω ∈ Ω, the sample path t 7→ B(t, ω) is continuous.

If we change condition (i) by (i’): P(B ∈ A) = µ(A) for all A ∈ B(R),
where µ is a probability measure on R, then {Bt}t≥0 is called a Brownian motion
with initial distribution µ. Therefore, there may exists a family of probability
measures {Pµ : µ is a p.m. on (R,B(R))} on sample space (Ω,F) and B is a
Brownian motion with initial distribution µ under Pµ. For x ∈ R and µ = δx,
we say that B is a Brownian motion starting at x, and denote the corresponding
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probability measure by Px. Trivially, under P0, {Bt+x}t≥0 is a Brownian motion
starting at x.

We will address the nontrivial question of the existence of a Brownian motion
later, for the moment let us step back and look at some technical points.

Remark 3.1. We can make the definition of Brownian motion in another way. A
real-valued process B = {Bt}t≥0 adapted to the filtration F = {Ft}t≥0 is called
a standard Brownian motion with respect to F, if B0 = 0 a.s.; for 0 ≤ s < t,

the increment Bt − Bs is independent of Fs and is normally distributed with
mean 0 and variance t− s; and every sample path of B is continuous. Thus the
Brownian motion {Bt}t≥0 defined in Definition 3.1 without using filtration, is
indeed a Brownian motion with respect to FB , the filtration generated by B.

Moreover, if B is a F-standard Brownian motion, since B is adapted to F, we
deduce that F must be a “larger” filtration than FB : for all t ≥ 0, FB

t ⊂ Ft.
Then clearly B is a FB-standard Brownian motion. It is often interesting, and
necessary, to work with a filtration F which is larger than FB . For instance,
we shall see in [3] Example 5.3.5 that the stochastic differential equation (5.3.1)
does not have a solution, unless we take the driving process W to be a Brownian
motion with respect to a filtration which is strictly larger than

{
FW

t

}
.

Remark 3.2. For two continuous-time stochastic process X and Y , we can think
of them as equivalent if they are indistinguishable. We therefore appropriately
relax the definition of Brownian motion. A process B = {Bt}t≥0 satisfying (i),
(ii), (iii) with almost surely continuous sample paths is also called a standard
Brownian motion.

The “canonical” space for Brownian motion, the one most convenient for many
future developments, is C[0,∞) the space of all continuous, real-valued functions
on [0,∞) with metric

d (ϕ1, ϕ2) :=

∞∑
n=1

1

2n
pn(ϕ1 − ϕ2)

1 + pn(ϕ1 − ϕ2)
, where

pn(ϕ1 − ϕ2) := max
t∈[0,n]

|ϕ1(t)− ϕ2(t)| for all n .
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Define πt the evaluation mapping (coordinate mapping) ϕ 7→ ϕ(t) for all ϕ ∈
C[0,∞). Then one can show that (see Lemma 4.1, 4.2 )

(i) C[0,∞) equipped tith the topology induced by d defined above, is a com-
plete, separable metric space. In fact, the topology is a locally convex vector
topology incuded by a countable family of seminorms.

(ii) The Borel σ-algebra B(C[0,∞)) coinsides with the σ-algebra generated by
the evaluation (coordinate) mappings {πt}t≥0, i.e.,

σ(πt : t ≥ 0) = B(C[0,∞)) .

So, if X = {Xt}t≥0 is a continuous stochastic process on (Ω,F ,P). We can
regard X as a random variable on (Ω,F ,P) with values in (C[0,∞),B(C[0,∞)),
and the law of X, is determined by its finite-dimensional distributions.

Later, we show how to construct a measure P, called Wiener measure, on
(C[0,∞),B(C[0,∞))), so that the coordinate mapping process is Brownian mo-
tion. That is, for any n ≥ 1 and any real numbers 0 = t0 < t1 < · · · < tn,

P(πtk ∈ Aj , 0 ≤ k ≤ n)

=

∫
A0

δ0(dx0)
∫
A1

p(t1, 0, x1)dx1 · · ·
∫
An

p(tn − tn−1, xn−1, xn)dxn

where δ0 is the point measure with suppoer {0} and

p(t, x, y) :=
1√
2πt

exp
{
−|x− y|2

2t

}
for t > 0, x, y ∈ R .

In the following example, we will see that, if we are interested in the sample
path properties of a stochastic process, we may need to specify more than just
its finite-dimensional distributions.

Example 3.1. Suppose that {Bt}t≥0 is a standard Brownian motion and U is
uniformly distributed on [0, 1] and independent with {Bt}t≥0. Then the process
{B̃t : t ≥ 0} defined by

B̃t =

{
Bt if t 6= U

0 if t = U
, t ≥ 0
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is a modification of B, but is discontinuous if B(U) 6= 0, i.e. with probability
one, and hence this process is not a Brownian motion.

A Brownian motions as Gaussian processes

Firstly, recall that a random vector X = (X1, · · · , Xn) is called a Gaussian
random vector, if there exists an n ×m matrix A, and vector b ∈ Rn such that
XT = AY + b, where Y is an m-dimensional vector with independent standard
normal entries. As we konw, a Gaussian random vectorX has independent entries
if and only if its covariance matrix is diagonal. In other words, the entries in a
Gaussian vector are uncorrelated if and only if they are independent.

In complete generality, a (real- valued) process (Xt)t∈T indexed by some set
T is said to be a Gaussian process if, for any given t1, · · · , tn, the vector(

X (t1) , · · · , X (tn)
)

is a Gaussian random vector. Thus the law of the process X is specified by the
functions

µ(t) := EXt and Γ(s, t) := Cov(Xs, Xt) .

Suppose now {Bt}t≥0 is a standard Brownian motion and 0 = t0 < t1 <

t2 < · · · < tn, then we can write B(t1), · · · , B(tn) as linear combinations of the
independent standard normal random variables

B(tj)−B(tj−1)√
tj − tj−1

, j = 1, . . . , n .

Hence {Bt}t≥0 is a Gaussian process with mean zero. For s < t,

E [BsBt] = EB2
s + E [Bs (Bt −Bs)]

= s+ E [Bs]E [Bt −Bs] = s ,

which gives the general rule

Cov (Bs, Bt) = s ∧ t .

As we have pointed, one cannot tell from the finite-dimensional distributions
alone whether or not the paths are continuous. Thus, We have the following
equivalent definition of standard Brownian motion.
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Theorem 3.1. {Bt}t≥0 is a standard Brownian motion if and only if

(i) {Bt} is a Gaussian process.

(ii) EBt = 0 and Cov(Bs, Bt) = s ∧ t for all t, s.

(iii) For every ω ∈ Ω, the function t 7→ B(t, ω) is continuous.

This simple fact turns out to be an extremely efficient means of checking when
a process is a Brownian motion, and the following four simple but extremely
important examples serve to illustrate this. We will give some transformations
on the space of functions that changes the individual Brownian random functions
without changing the distribution.

Theorem 3.2 (Invariance). {Bt}t≥0 is a standard Brownian motion, then we
have the following invaiant properties.

(i) (Symmetry) {−Bt}t≥0 is a standard Brownian motion.

(ii) (Increments reversal) For any given t > 0, {B(t − s) − B(t)}0≤s≤t is a
standard Brownian motion.

(iii) (Scaling invariance) For any given a > 0, the process {Wt}t≥0 defined by

W (t) =
1

a
B
(
a2t
)

is a standard Brownian motion.

(iv) (Time inversion) The process {Xt}t≥0 defined by

X(t) =

{
0 for t = 0

tB
(
1
t

)
for t > 0

is a standard Brownian motion.

Proof. We only show (iv). Obviously, {Xt}t≥0 is also a Gaussian process and
the Gaussian random vectors (X (t1) , . . . , X (tn)) have expectation zero. The
covariances, for t > 0, h ≥ 0, are given by

Cov(X(t+ h), X(t)) = (t+ h) t Cov[B
( 1

t+ h

)
, B
(1
t

)
] = t .
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Hence the law of all the finite-dimensional distributions

(X (t1) , X (t2) , · · · , X (tn)) , for 0 ≤ t1 ≤ · · · ≤ tn ,

are the same as for Brownian motion. The paths of t 7→ X(t) are clearly contin-
uous for all t > 0 and in t = 0 we use the following two facts: First, as the set
Q of rationals is countable, the distribution of {Xt : t > 0, t ∈ Q} is the same as
for a Brownian motion, and hence

lim
t↓0
t∈Q

Xt = 0 a.s..

Second, Q∩(0,∞) is dense in (0,∞) and {Xt : t ≥ 0} is almost surely continuous
on (0,∞), so that

lim
t↓0

Xt = 0 a.s..

So {Xt} has almost surely continuous paths. By Theorem 3.1 , it’s a standard
Brownian motion (in the indistinguishable sence).

Remark 3.3. Scaling invariance implies that the self-similarity of the sample paths
of Brownian motions, and we roughly say that Brownian motions are in some
sense random fractals .

Remark 3.4. The symmetry inherent in the time inversion property becomes
more apparent if one considers the Ornstein-Uhlenbeck diffusion {Xt}t∈R, which
is given by

X(t) = e−tB
(
e2t
)

for all t ∈ R

This is a Markov process (this will be explained properly later), such that X(t)

is standard normally distributed for all t. It is a diffusion with a drift towards
the origin proportional to the distance from the origin. Unlike Brownian motion,
the Ornstein-Uhlenbeck diffusion is time reversible: The time inversion formula
gives that {X(t)}t≥0 and {X(−t)}t≥0 have the same law. For t near −∞, X(t)

relates to the Brownian motion near time 0, and for t near ∞, X(t) relates to
the Brownian motion near ∞.
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Example 3.2. As an example for the use of scaling invariance, let a < 0 < b,

and look at
τ(a,b) = inf {t ≥ 0 : Bt ∈ {a, b}} ,

the first exit time of a standard Brownian motion from the interval [a, b]. Then,
with W (t) = 1

bB
(
b2t
)

we have

E0 τ(a,b) = b2 E0 inf{t ≥ 0 :Wt = a/b or Wt = 1} = b2 E0 τ( a
b ,1)

which implies that E τ(−b,b) is a constant multiple of b2. Also

P0 (Bt exits [a, b] at a) = P0

(
Wt exits [

a

b
, 1] at 1

)
is only a function of the ratio a/b. The scaling invariance property will be used
extensively in all the following sections, and we shall often use the phrase that a
fact holds ‘by Brownian scaling’ to indicate this.

Example 3.3. We have

P0

(
sup
t≥0

Bt = +∞, inf
t≥0

Bt = −∞
)

= 1 .

To see this, let Z := suptBt. By Brownian scaling, for any c > 0, we have

cZ
law
= Z ,

so the law of Z is concentrated on {0,+∞}. Then it suffices to show that P0(Z =

0). Note that

P0(Z = 0) ≤ P0

(
B(1) ≤ 0 , sup

t≥0
B(t+ 1)−B(1) = 0

)
=

1

2
P0(Z = 0) .

Thus P0(Z = 0) = 0, and the desired result follows.

Time inversion is a useful tool to relate the properties of Brownian motion in
a neighbourhood of time t = 0 to properties at infinity. To illustrate the use of
time inversion we exploit Theorem 3.1 (iv) to get an interesting statement about
the long-term behaviour from an easy statement at the origin.
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Example 3.4 (Law of large numbers). Almost surely,

lim
t→∞

Bt

t
= 0 .

To see this, let {Xt}t≥0 be the time inversion of {Bt}. Thus, it’s easy to see that

lim
t→∞

Bt

t
= lim

t→∞
X
(1
t

)
= 0 a.s..

B Brownian motions as Lévy processes

Let {Xt}t≥0 be a continuous-time processes. Recall that we say it has independent
increments if, for each n ≥ 1 and 0 ≤ t1 < t2 < · · · < tn < ∞, the random
variables

X(t2)−X(t1) · · · , X(tn)−X(tn−1)

are independent; it has stationary increments iff, for any t, s ≥ 0,

X (t+ s)−X (s)
law
= X (t)−X(0) .

We give the following definition: {Xt}t≥0 is called a Lévy process if, (i) X0 = 0

a.s., (ii) {Xt}t≥0 has independent, stationary increments, and (iii) {Xt}t≥0 is
continuous in probability : for all t ≥ 0, X(t + h)

P−→ X(t) as h → 0 (t + h ≥ 0),
i.e., for any ϵ > 0,

lim
h→0,t+h≥0

P ( |X(t+ h)−X(t)| > ϵ) = 0 .

Remark 3.5. Note that in the presence of (i) and (ii), (iii) is equivalent to the
condition limh↓0 P( |Xh| > ϵ) = 0.

A Lévy process may thus be viewed as the continuous-time analog of a ran-
dom walk. We have already discussed an example of a Lévy process with right-
continuous paths, the Poisson process. As we can see, Brownian motion {Bt}
with drift µ and variance σ2 starting at origin, is a Lévy process with continu-
ous paths : (i),(ii) are clear, and B(t + h) → B(t) a.s., since the sample paths
continuous almost surely. However, surprisingly, the converse is ture.
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Theorem 3.3. Suppose {Xt}t≥0 is a Lévy process with continuous paths. Then
there exists µ and σ2 such that {Xt}t≥0 is a Brownian motion with drift µ and
variance σ2, starting in 0.

Proof. All we need to show is that X(1) has a normal distribution. Let

Yn,j = X
( j
n

)
−X

(j − 1

n

)
, for j = 1, 2, · · · , n .

then
X1 = Yn,1 + · · ·+ Yn,n .

We shall use Lindeberg-Feller’s theorem to show the desired result.

Step 1. We claim that all the moments of Xt are finite. To see this, let

M = max
0≤t≤1

|Xt| ,

since t 7→ Xt is continuous, we have M < ∞ a.s. , so there exists some positive
integer k such that

P(M ≥ k) ≤ 1

2
.

Then using continuity of the paths, by stopping at the first time t that |Xt| = nk,

we can see that
P(M ≥ (n+ 1)k |M ≥ nk) ≤ 1

2
.

and hence
P(M ≥ nk) ≤ 1

2n
.

Thus all the moments of M are finite. Of course all the moments of Xt are finite
for a given t.

Step 2. Let EX1 = µ, and Var (X1) = σ2. Since the increments are inde-
pendent and stationary,

EYn,j =
µ

n
, Var (Yn,j) =

σ2

n
, for all j = 1, · · · , n

Let ξn,j = Yn,j − EYn,j , then Eξn,j = 0 and
n∑

j=1

E ξ2n,j = σ2
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It suffices to check the Lindeberg’s condition : for any ϵ > 0,
n∑

j=1

E ξ2n,j1{|ξn,j |>ϵ} → 0 .

Define Nn =
∑n

j=1 1{|ξn,j |>ϵ}, note that |ξn,j | ≤ |Yn,j |+ |EYn,j | we have

n∑
j=1

ξ2n,j1{|ξn,j |>ϵ} ≤
(
2M +

|µ|
n

)2
Nn

By C-B-S inequality, Lindeberg’s condition follows from

EN2
n → 0 . (3.1)

Step 3. To show (3.1), put

Zn = max
1≤j≤n

|Yn,j | .

Continuity of the paths implies that Zn → 0 a.s., and hence for every ϵ > 0,

P (Zn ≤ ϵ) → 1 .

Since the increments are independent and stationary, we have

P (Zn ≤ ϵ) = [1− P (|Yn,1| > ϵ)]
n ≤ e−nP(|Yn,1|>ϵ)

Therefore, for every ϵ > 0, nP (|Yn,1| > ϵ) → 0, which deduce that

nP (|ξn,1| > ϵ) → 0 .

So ENn = nP (|ξn,1| ≥ ϵ) → 0,

Var(Nn) =

n∑
j=1

Var(1{|ξn,j |>ϵ}) ≤
n∑

j=1

E1{|ξn,j |>ϵ} = ENn → 0,

and then (3.1) follows.
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3.2 Existence of Brownian motion

It is a substantial issue whether the conditions imposed on the finite-dimensional
distributions in the definition of Brownian motion allow the process to have con-
tinuous sample paths, or whether there is a contradiction. Now we show that
there is no contradiction and, fortunately, Brownian motion exists.

Theorem 3.4 (Wiener’s theorem). Standard Brownian motion exists.

Sketch : we construct Brownian motion as a uniform limit of continuous functions,
to ensure that it automatically has continuous paths. We first construct Brownian
motion on the interval [0, 1] as a random element on the space C[0, 1] of continuous
functions on [0, 1]. The idea is to construct the right joint distribution of Brownian
motion step by step on the finite sets

Dn =

{
k

2n
: 0 ≤ k ≤ 2n

}
of dyadic points. We then interpolate the values on Dn linearly and check that
the uniform limit of these continuous functions exists and is a Brownian motion.

Proof. Step 1. Let D =
⋃∞

n=0 Dn and let (Ω,F ,P) be a probability space on
which a collection {Zt : t ∈ D} of independent, standard normally distributed
r.v.’s can be defined. Let B(0) := 0 and B(1) := Z1. For each n ∈ N we define
the random variables B(d), d ∈ Dn such that

(i) for all r < s < t in Dn the random variable B(t) − B(s) is normally
distributed with mean zero and variance t−s, and is independent of B(s)−
B(r)

(ii) the vectors (B(d) : d ∈ Dn) and (Zt : t ∈ D\Dn) are independent.

Note that we have already done this for D0 = {0, 1}. Proceeding inductively we
may assume that we have succeeded in doing it for some n − 1. We then define
B(d) for d ∈ Dn\Dn−1 by

B(d) =
1

2

[
B
(
d− 1

2n
)
+B

(
d+

1

2n
)]

+
Zd

2
n+1
2
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Note that the first summand is the linear interpolation of the values of B at the
neighbouring points of d in Dn−1. ThereforeB(d) is independent of (Zt : t ∈ D\Dn)

and the second property is fulfilled.

Moreover, as
1

2

[
B
(
d− 1

2n
)
+B

(
d+

1

2n
)]

depends only on (Zt : t ∈ Dn−1) , it is independent of Zd. By our induction
assumptions both terms are normally distributed. Then their sum, and their
difference

B(d)−B
(
d− 1

2n
)
, B

(
d+

1

2n
)
−B(d)

are independent and normally distributed with mean zero and variance 1
2n .

Indeed, all increments

B(d)−B
(
d− 1

2n
)
, d ∈ Dn\{0},

are independent. To see this, it suffices to show that they are pairwise indepen-
dent, as the vector of these increments is Gaussian. We have seen in the previous
paragraph that pairs

B(d)−B
(
d− 1

2n
)
, B

(
d+

1

2n
)
−B(d)

with d ∈ Dn\Dn−1 are independent. The other possibility is that the incre-
ments are over intervals separated by some d ∈ Dn−1. Choose d ∈ Dj with this
property and minimal j, so that the two intervals are contained in

[
d− 2−j , d

]
,

respectively
[
d, d+ 2−j

]
. By induction the increments over these two intervals of

length 2−j are independent, and the increments over the intervals of length 2−n

are constructed from the independent increments B(d) − B
(
d− 2−j

)
, respec-

tively B
(
d+ 2−j

)
− B(d) using a disjoint set of variables (Zt : t ∈ Dn) . Hence

they are independent and this implies the first property, and completes the in-
duction step.

Step 2. Having thus chosen the values of the process on all dyadic points,
we interpolate between them. Formally, for each n denote by (Bn(t))t≥0 the
continuous process obtained by linear interpolation from {B(d) : d ∈ Dn}.

Bn(t) =

{
B(d) for t = d ∈ Dn

linear in between
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10 Brownian motion as a random function

Moreover, as 1
2 [B(d+2−n )−B(d−2−n )] depends only on (Zt : t ∈ Dn−1), it is indepen-

dent of Zd/2(n+1)/2 . By our induction assumptions both terms are normally distributed
with mean zero and variance 2−(n+1) . Hence their sum B(d) − B(d − 2−n ) and their
difference B(d + 2−n ) − B(d) are independent and normally distributed with mean zero
and variance 2−n by Corollary 12.12.

Indeed, all increments B(d) − B(d − 2−n ), for d ∈ Dn \ {0}, are independent. To see
this it suffices to show that they are pairwise independent, as the vector of these increments
is Gaussian. We have seen in the previous paragraph that pairs B(d) − B(d − 2−n ),
B(d + 2−n ) − B(d) with d ∈ Dn \ Dn−1 are independent. The other possibility is
that the increments are over intervals separated by some d ∈ Dn−1 . Choose d ∈ Dj

with this property and minimal j, so that the two intervals are contained in [d − 2−j , d],
respectively [d, d + 2−j ]. By induction the increments over these two intervals of length
2−j are independent, and the increments over the intervals of length 2−n are constructed
from the independent increments B(d) − B(d − 2−j ), respectively B(d + 2−j ) − B(d),
using a disjoint set of variables (Zt : t ∈ Dn ). Hence they are independent and this implies
the first property, and completes the induction step.

t

B0(t)
B2(t)

Z1

B1(t)

1
2Z 1

2

0 1 0 0

1√
8
Z 3

4

1 1
t t

1√
8
Z 1

4

Fig. 1.2. The first three steps in the construction of Brownian motion

Having thus chosen the values of the process on all dyadic points, we interpolate between
them. Formally, define

F0(t) =

⎧⎨⎩
Z1 for t = 1,

0 for t = 0,

linear in between,

and, for each n � 1,

Fn (t) =

⎧⎨⎩
2−(n+1)/2Zt for t ∈ Dn \ Dn−1

0 for t ∈ Dn−1

linear between consecutive points in Dn .

These functions are continuous on [0, 1] and, for all n and d ∈ Dn ,

B(d) =
n∑

i=0

Fi(d) =
∞∑

i=0

Fi(d), (1.1)

Figure 3.1: The first three steps in the construction of Brownian motion

Then, set Fn(t) = Bn(t)−Bn−1(t), so

Fn(t) =


Zd

2(n+1)/2
, for t = d ∈ Dn\Dn−1

0 , for t = d ∈ Dn−1

linear between consecutive points in Dn

. (3.2)

Clearly,
‖Fn‖∞ = sup

{
|Zd|

2(n+1)/2
: d ∈ Dn\Dn−1

}
.

So for large n,

P
(
‖Fn| ≥

c
√
n

2(n+1)/2

)
≤ 2nP

(
|Z1| ≥ c

√
n
)
≤ 2n exp

(
−c2n
2

)
.

Take c >
√
2 log 2, by the Borel-Cantelli lemma there exists a random (but almost

surely finite) N such that

‖Fn‖∞ < c
√
n2−

n
2 , for all n ≥ N .

This upper bound implies that, almost surely, the sequence {Bn} is uniformly
convergent on [0, 1]. We denote the continuous limit by

{B(t) : t ∈ [0, 1]} .

Step 3. We check that the increments of this process have the right finite-
dimensional distributions, namely Brownian distribution. This follows directly
from the properties of B on the dense set D ⊂ [0, 1] and the continuity of the
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paths. Indeed, suppose that t1 < t2 < · · · < tn are in [0, 1]. We find {ti,k} in D so
that ti,k ↑ tk as i→ ∞, and infer from the continuity of B that, for 1 ≤ i ≤ n−1,

B (ti+1)−B (ti) = lim
k↑∞

B (ti+1,k)−B (ti,k) .

Using the characteristic function of Gsussian r.v., we have that the increments
B (ti+1)−B (ti) are independent Gaussian r.v’s with mean 0 and variance ti+1−ti.
We have thus constructed a continuous processB : [0, 1] → R with the same finite-
dimensional distributions as Brownian motion. Take a sequence B0, B1, · · · of
independent C[0, 1]-valued random variables with the distribution of this process,
and define {B(t)}t≥0 by gluing together the parts, more precisely by

B(t) = B[t](t− [t]) +

[t]−1∑
i=0

Bi(1), for all t ≥ 0 .

This defines a continuous random function B : [0,∞) → R and one can see easily
from what we have shown so far that it is a standard Brownian motion.

Remark 3.6. If Brownian motion is constructed as a family {Bt}t≥0 of random
variables on some probability space Ω, it is sometimes useful to know that the
mapping :

(t, ω) 7→ B(t, ω)

is measurable on the product space [0,∞)× Ω.

We point that this can be achieved by Lévy’s construction. In fact, the
Brownian motion is defined on a probability space (Ω,F ,P) on which a collection
{Zt : t ∈ D} of independent, standard normally distributed random variables are
defined. It is easy to see from the construction that, for any n ∈ N, the functions
Bn are jointly measurable as a function of Zd, d ∈ Dn and t ∈ [0, 1]. Therefore
it is also jointly measurable as a function of ω ∈ Ω and t ∈ [0, 1] and this carries
over to (ω, t) 7→ B(ω, t) by summation and taking a limit.

3.3 Nondifferentiability of Brownian motion

In this section, we always suppose that B = {Bt}t≥0 is a standard Brownian
motion. One manifestation is that the paths of Brownian motion have no intervals
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of monotonicity.

Theorem 3.5. Almost surely, Brownian motion {Bt}t≥0 doesn’t have a mono-
tone interval.

Proof. Given an interval [a, b] ⊂ [0,∞], if it is an interval of monotonicity, we
pick numbers

a = a0 < a1 < · · · < an = b

and divide [a, b] into n sub-intervals [ai, ai+1] . Each increment

B (ai)−B (ai−1) , i = 1 · · · , n

has to have the same sign. As the increments are independent, this has probability

2 · 1

2n

and taking n → ∞ shows that the probability that [a, b] is an interval of mono-
tonicity must be zero.

Taking a countable union gives that, almost surely, there is no nondegenerate
interval of monotonicity with rational endpoints, but each nondegenerate interval
would have a nondegenerate rational sub-interval.

Proposition 3.6. Almost surely,

lim sup
n→∞

Bn√
n
= +∞ , and lim inf

n→∞

Bn√
n
= −∞ .

Proof. We clearly have, by Fatou’s lemma,

P
(
Bn > C

√
n i.o.

)
≥ lim sup

n→∞
P
(
Bn > C

√
n
)

By the scaling property, the expression in the limsup equals P(B1 > C), which is
positive. Denote Xn = Bn −Bn−1 for all n then

{
Bn√
n
> C i.o.

}
=

 1√
n

n∑
j=1

Xj > C i.o.


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is an tail event with respect to {Xn}. Hence the Kolmogorov 0-1 law gives that,

P
(
Bn > C

√
n i.o.

)
= 1 .

Taking the intersection over all positive integers C gives the first part of the
statement and the second part is proved analogously.

Remark 3.7. Let {Bt} be (one-dimensional) Brownian motion and let

A = ∩n {Bt = 0 for some t ≥ n} .

Then Px(A) = 1 for all x ∈ R. In other words, one-dimensional Brownian motion
is recurrent. For any starting point x, it will return to 0 ”infinitely often,” i.e.,
there is a sequence of times tn ↑ ∞ so that B(tn) = 0. We have to be careful
with the interpretation of the phrase in quotes since starting from 0, Bt will hit
0 infinitely many times by time ϵ > 0. See Theorem 3.26.

For a function f, we define the upper and lower right derivatives

D∗f(t) = lim sup
h↓0

f(t+ h)− f(t)

h

and
D∗f(t) = lim inf

h↓0

f(t+ h)− f(t)

h
.

We now show that for any fixed time t, almost surely, Brownian motion is not
differentiable at t. For this we use Proposition 3.6 and the invariance under time
inversion.

Proposition 3.7. Fix t ≥ 0, then, almost surely, Brownian motion is not dif-
ferentiable at t. Moreover,

D∗B(t) = +∞ and D∗B(t) = −∞ .

Proof. Without loss of generality, we assume t = 0. Or we can consider {B̃s},
defined by B̃(s) = B(t+ s)−B(t).
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For a standard Brownian motion {Bt}, we construct a further Brownian mo-
tion {Xt} by time inversion. Then

D∗X(0) ≥ lim sup
n→∞

X
(
1
n

)
−X(0)
1
n

= lim sup
n→∞

nX

(
1

n

)
= lim sup

n→∞
B(n) .

By Proposition 3.6, the we find that D∗X(0) is infinite. Similarly, one can see
that D∗X(0) = −∞, showing that X is not differentiable at 0.

While the previous proof shows that every t is almost surely a point of non-
differentiability for the Brownian motion, this does not imply that almost surely
every t is a point of non-differentiability for the Brownian motion!

Remark 3.8. The behaviour of Brownian motion at a fixed time t > 0 reflects the
behaviour at typical times in the following sense. Suppose X = {f ∈ C[0,∞) :

f is differentable at 0}. Then we have shown that for any t ≥ 0,

{B(t+ s)−B(t) : s ≥ 0} ∈ X a.s. (3.3)

Denote the (random) set D = {t : {B(t + s) − B(t) : s ≥ 0} /∈ X}, then we
shall show that almost surely, D has Lebesgue measure zero. To see this, using
the joint measurability mentioned in the remark of Theorem 3.4 and Fubini’s
theorem,

E
∫ ∞

0

1D dt =
∫ ∞

0

P ({B(t+ s)−B(t) : s ≥ 0} /∈ X )dt = 0 .

Thus λ(D) = 0 a.s., where λ is the Lebesgue measure.

Theorem 3.8 (Paley, Wiener and Zygmund). Almost surely, Brownian motion
is nowhere differentiable. Moreover, almost surely,

either D∗B(t) = +∞ or D∗B(t) = −∞ or both, for each t ≥ 0 .

Proof. Suppose that there is a t0 ∈ [0, 1] such that −∞ < D∗B (t0) ≤ D∗B (t0) <

∞, then
lim sup

h↓0

|B (t0 + h)−B (t0)|
h

<∞ .
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Using the continuity of paths, there exists some M so that

sup
h∈[0,1]

|B (t0 + h)−B (t0)|
h

≤M .

Thus,
{∃t0 ∈ [0, 1],−∞ < D∗B (t0) ≤ D∗B (t0) <∞}

⊂
∞⋃

M=1

{
∃t0 ∈ [0, 1] s.t. sup

h∈[0,1]

|B (t0 + h)−B (t0)|
h

≤M

}
It suffices to show that, for any fixed M , we have

P

(
∃t0 ∈ [0, 1] s.t. sup

h∈[0,1]

|B (t0 + h)−B (t0)|
h

≤M

)
= 0 .

If t0 is contained in the binary interval
[
k−1
2n , k

2n

]
for some n ≥ 2 and k ≥ 1, then

for all 1 ≤ j ≤ 2n − 1 the triangle inequality gives∣∣∣∣B(k + j

2n

)
−B

(
k + j − 1

2n

)∣∣∣∣
≤
∣∣∣∣B(k + j

2n

)
−B (t0)

∣∣∣∣+ ∣∣∣∣B (t0)−B

(
k + j − 1

2n

)∣∣∣∣ ≤ 2j + 1

2n
M .

Define events

An,k :=

{ ∣∣∣∣B(k + j

2n

)
−B

(
k + j − 1

2n

)∣∣∣∣ ≤ 2j + 1

2n
M for j = 1, 2, 3

}
,

Then, clearly{
∃ t0 ∈ [0, 1] s.t. sup

h∈[0,1]

|B (t0 + h)−B (t0)|
h

≤M

}
⊂

∞⋂
n=2

2n⋃
k=1

An,k .

By independence of the increments and the scaling property, for 1 ≤ k ≤ 2n,

P (An,k) ≤
3∏

j=1

P
(∣∣∣∣B(k + j

2n

)
−B

(
k + j − 1

2n

)∣∣∣∣ ≤ 2j + 1

2n
M

)

≤ P
(
|B(1)| ≤ 7M√

2n

)3

≤
(

7M√
2n

)3

.
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Hence

P

(
2n⋃
k=1

An,k

)
≤ 2n

(
7M√
2n

)3

=
(7M)3√

2n
,

Thus

P

(
∃ t0 ∈ [0, 1] s.t. sup

h∈[0,1]

|B (t0 + h)−B (t0)|
h

≤M

)
≤ (7M)3√

2n
.

Letting n→ ∞, the desired result follows.

Remark 3.9. The proof of Theorem 3.8 can be tightened to prove that, for any
α > 1/2, almost surely, the sample paths of Brownian motion are nowhere locally
α-Hölder continuous.

Another important regularity property, which Brownian motion does NOT
possess is to be of bounded variation. Recall that a function f : [a, b] → R is a
function of bounded variation if

Vf := sup
P∈P

k∑
j=1

|f (xj)− f (xj−1)| <∞

where the supremum is taken over the set P = {P : a = x0 < x1 · · · < xn} all
the partitions of [a, b]. If the supremum is infinite f is said to be of unbounded
variation. As we konw, f is of bounded variation if and only if it can be written
as the difference of two increasing functions.

Theorem 3.9. Suppose that the sequence of partitions

0 = t
(n)
0 ≤ t

(n)
1 ≤ · · · ≤ t

(n)
k(n)−1 ≤ t

(n)
k(n) = t

is nested, i.e. at each step one or more partition points are added, and the mesh

∆(n) := sup
1≤j≤k(n)

∣∣∣t(n)j − t
(n)
j−1

∣∣∣
converges to zero. Then, almost surely,

lim
n→∞

k(n)∑
j=1

∣∣∣B (t(n)j

)
−B

(
t
(n)
j−1

)∣∣∣2 = t ,

and therefore Brownian motion is of unbounded variation.
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Remark 3.10. For a sequence of partitions as above, we call

lim
n→∞

k(n)∑
j=1

(
B
(
t
(n)
j

)
−B

(
t
(n)
j−1

))2
the quadratic variation of Brownian motion. The fact that Brownian motion
has finite quadratic variation will be of crucial importance in Stochastic integrals
and applications. However, the analogy to the notion of bounded variation of a
function is not perfect : there exists a sequence of partitions

0 = t
(n)
0 ≤ t

(n)
1 ≤ · · · ≤ t

(n)
k(n)−1 ≤ t

(n)
k(n) = t

with mesh converging to zero, such that almost surely

lim sup
n→∞

k(n)∑
j=1

(
B
(
t
(n)
j

)
−B

(
t
(n)
j−1

))2
= ∞

In particular, the condition that the partitions in Theorem 1.35 are nested cannot
be dropped entirely. See Exercise 1.15 and Exercise 1.16, [5].

Lemma 3.10. If Y, Z are independent, symmetric random variables in L2, then

E
[
(Y + Z)2|Y 2 + Z2

]
= Y 2 + Z2 a.s..

Proof. By symmetry of Z we have

E
[
(Y + Z)2|Y 2 + Z2

]
= E

[
(X − Z)2|Y 2 + Z2

]
Both sides of the equation are finite, so that we can take the difference and obtain

E
[
Y Z|X2 + Z2

]
= 0

and the result follows immediately.

Proof of Theorem 3.9. Step 1. For each n ≥ 1, let

Xn :=

k(n)∑
j=1

(
B
(
t
(n)
j

)
−B

(
t
(n)
j−1

))2
.
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Clearly, for all n we have EXn = t and

E |Xn − t|2 =

k(n)∑
j=1

∣∣∣t(n)j − t
(n)
j−1

∣∣∣2 Var(B2
1) ≤ Var(B2

1)∆(n) t

Thus Xn → t in L2. To see that (Xn)n≥1 converges almost surely, we use the
theory of martingales in discrete time. We denote by Gn the σ-algebra generated
by the random variables Xn, Xn+1, · · · . Then

G∞ :=

∞⋂
k=1

Gk ⊂ · · · ⊂ Gn+1 ⊂ Gn ⊂ · · · ⊂ G1 .

We show that (Xn)n≥1 is a backward martingale, i.e.,

Xn+1 = E (Xn|Gn+1) a.s.. (3.4)

Then, by Theorem 1.57, we getXn → E(X1|G∞) a.s. and in L1. Thus, E(X1|G∞) =

t almost surely and the desired result follows.

Step 2. By inserting elements in the sequence, if necessary, we may assume
that at each step exactly one point is added to the partition. The proof of
(3.4) is easy with the help of Lemma 3.10. Indeed, if s ∈

(
t
(n)
j−1, t

(n)
j

)
is the

inserted point we apply it to the symmetric, independent random variables B(s)−
B
(
t
(n)
j−1

)
, B
(
t
(n)
j

)
− B(s). Then using the independence of the increments of

Brownian motion,

E
[(
B
(
t
(n)
j

)
−B

(
t
(n)
j−1

))2
|Gn+1

]

= E
[(
B
(
t
(n)
j

)
−B

(
t
(n)
j−1

))2 ∣∣∣∣ (B (t(n)j

)
−B(s)

)2
+
(
B(s)−B

(
t
(n)
j−1

))2]
=
(
B
(
t
(n)
j

)
−B(s)

)2
+
(
B(s)−B

(
t
(n)
j−1

))2
a.s..

Hence
Xn+1 = E (Xn|Gn+1) a.s..

Step 3. By the Hölder continuous property, we can find, for any α ∈ (0, 1/2),

a (random) n ∈ N such that |B(a) − B(b)| ≤ |a − b|α for all a, b ∈ [0, t] with
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|a− b| ≤ ∆(n). Hence

Xn ≤
k(n)∑
j=1

∆(n)α
∣∣∣B (t(n)j

)
−B

(
t
(n)
j−1

)∣∣∣
Therefore, once we show that the (Xn) converge almost surely to a positive
random variable, it follows immediately that Brownian motion is almost surely
of unbounded variation.

3.4 Continuity properties of Brownian motion

The definition of Brownian motion already requires that the sample functions are
continuous almost surely. This implies that on the interval [0, 1] (or any other
compact interval) the sample functions are uniformly continuous, i.e., there exists
some (random) function φ with limh↓0 φ(h) = 0 called a modulus of continuity of
the function B : [0, 1] → R such that

lim sup
h↓0

sup
t∈[0,1−h]

|B(t+ h)−B(t)|
φ(h)

≤ 1 .

Can we achieve such a bound with a deterministic function φ, i.e., is there a
nonrandom modulus of continuity for the Brownian motion ? Surprisingly, the
answer is yes, as the following theorem shows.

Theorem 3.11. For standard Brownian motion {B(t)}, there exists a constant
C > 0 such that, almost surely, for every sufficiently small h > 0,

|B(t+ h)−B(t)| ≤ C

√
h log 1

h
for all t ∈ [0, 1− h] . (3.5)

First proof. This follows quite elegantly from Lévy’s construction of standard
Brownian motion. Recall the notation introduced in (3.2) and that we have
represented Brownian motion as a series

B(t) =

∞∑
n=0

Fn(t) ,
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where each Fn is a piecewise linear function. We have shown that for any c >
√
2 log 2 there exists a (random) N ∈ N, such that,

‖Fn‖∞ < c
√
n2−

n
2 , for all n ≥ N .

Now for each t, t+ h ∈ [0, 1],

|B(t+ h)−B(t)| ≤
∞∑

n=0

|Fn(t+ h)− Fn(t)| ,

Suppose that h is (again random and) small enough, then the positive integer ℓ,
defined by h ∈ ( 1

2ℓ
, 1
2ℓ−1 ], exceeds N . Hence

∞∑
n=ℓ+1

|Fn(t+ h)− Fn(t)| ≤ 2

∞∑
n=ℓ+1

‖Fn‖∞ ≤ 2c

∞∑
n=ℓ+1

√
n2−

n
2

and there exists constants C1, C2 such that
∞∑

n=ℓ+1

√
n2−

n
2 ≤ C1

√
ℓ 2−

ℓ
2 ≤ C2

√
h log 1

h
.

Hence, using the mean-value theorem, we get for all ℓ > N that |B(t+h)−B(t)|
is bounded by

h

ℓ∑
n=0

‖F ′
n‖∞ + C2

√
h log 1

h
.

Note that
‖F ′

n‖∞ ≤
2 ‖Fn‖∞

2−n
≤ 2c

√
n2n/2 for n ≥ N ,

Thus

h

ℓ∑
n=0

‖F ′
n‖∞ ≤ h

N∑
n=0

‖F ′
n‖∞ + 2ch

ℓ∑
n=N

√
n2n/2

We now suppose that h is (again random and) small enough that the first sum-
mand is smaller than

√
h log 1

h , and note that there exists constants C3, C4 so
that

2ch

ℓ∑
n=N

√
n2n/2 ≤ C3h

√
ℓ 2ℓ/2 ≤ C4

√
h log 1

h
,

we get (3.5).
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This upper bound is pretty close to the optimal result. The following lower
bound confirms that the only missing bit is the precise value of the constant.

Theorem 3.12. For every constant C <
√
2, almost surely, for every ϵ > 0 there

exist 0 < h < ϵ and t ∈ [0, 1− h] with

|B(t+ h)−B(t)| ≥ C

√
h log 1

h
.

Proof. Let C <
√
2 and define, for integers k, n ≥ 0, the events

An,k =

{
B

(
k + 1

en

)
−B

(
k

en

)
> C

√
ne−n/2

}
.

Then for any k ≥ 0

P (An,k) = P
(
B

(
1

en

)
> C

√
ne−n/2

)
= P

(
B(1) > C

√
n
)
≥ C

√
n

C2n+ 1

1√
2π
e−C2n/2

By our assumption on C, we have enP (An,k) → ∞ as n ↑ ∞. Therefore, using
1− x ≤ e−x for all x

P

[en−1]⋂
k=0

Ac
n,k

 = (1− P (An,0))
en ≤ exp (−enP (An,0)) → 0 .

Thus

P

[en−1]⋃
k=0

An,k i.o.

 ≥ lim sup
n→∞

P

[en−1]⋃
k=0

An,k

 = 1 .

The desired result follows.

Remark 3.11. One can determine the constant c in the best possible modulus of
continuity φ(h) = c

√
h log(1/h) precisely. Indeed, our proof of the lower bound

yields a value of c =
√
2 which turns out to be optimal. This striking result is

due to Paul Lévy: Almost surely,

lim sup
h↓0

sup
0≤t≤1−h

|B(t+ h)−B(t)|√
2h log(1/h)

= 1 .
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Let I be an interval of R and f : I → R. Recall that f is said to be locally
α-Hölder continuous, if there exists δ > 0 and C > 0 such that

|f(x)− f(y)| ≤ C|x− y|α, for all x, y ∈ I with |y − x| < δ . (3.6)

We say f is said to be locally α-Hölder continuous at x ∈ I, if there exists δ, C > 0

such that (3.6) holds for any y ∈ I with |y − x| < δ. Note that locally α-Hölder
continuous is uniformly locally α-Hölder continuous at every point. We refer to
α > 0 as the Hölder exponent and to C > 0 as the Hölder constant. Clearly,
α-Holder continuity gets stronger, as the exponent α gets larger.

The results of this section so far indicate that, for Brownian motion, the
transition between paths which are α-Hölder continuous and paths which are not
happens at α = 1

2 .

Corollary 3.13. Let α < 1
2 . Then, almost surely, Brownian motion is locally

α-Hölder continuous.

Remark 3.12. This result is optimal in the sense that, for α > 1/2, almost surely,
at every point, Brownian motion fails to be locally α-Hölder continuous. See
Remark 3.9. Points where Brownian motion is locally 1/2-Hölder continuous
exist almost surely, but they are very ‘rare’. See Chapter10, [5].

Second proof of Theorem 3.11∗ We will give another proof of Theorem 3.11,
assuming that the distributuion of the maximum of Brownian motion is known.

Proof. For any h > 0, let

Osc(h) := {|B(t)−B(s)| : t, s ∈ [0, 1] , |t− s| ≤ h} .

It’s easy to see that Theorem 3.5 hols if and only if there exists a constant C > 0

and almost surely,
lim
h→0

Osc(h)√
h log 1

h

≤ C . (3.7)

Firstly, take a positive integer n and let

In,m =

[
m− 1

2n
,
m

2n

]
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for m = 1, 2, · · · , 2n and denote

∆n,m = sup
t∈In,m

∣∣∣∣B(t)−B(
m− 1

2n
)

∣∣∣∣ .
By Brownian scaling, for a standard Brownian motion {W (t)}, ∆n,m is indetically
distributed to

M ∨ M̃√
2n

where
M := max

0≤t≤1
W (t) and M̃ := max

0≤t≤1
−W (t) .

Thus for given x > 0,

P
(
∆n,m >

2x√
2n

)
= P

(
M ∨ M̃ > 2x

)
and note that

{M ∨ M̃ > 2x} ⊂ {M > x} ∪ {M̃ > x} ,

we have

P
(
∆n,m >

2x√
2n

)
≤ 2P (M > x) = 2 P (|B(1)| > x)

= 4

∫ ∞

x

(2π)−
1
2 exp

(
− t

2

2

)
dt ≤ exp

(
−x

2

2

)
.

So

P
(

exists m s.t. ∆n,m >
2x√
2n

)
≤ 2n exp

(
−x

2

2

)
= exp

(
n log 2− x2

2

)
.

In order that
∞∑

n=1

P
(

exists m s.t. ∆n,m >
2xn√
2n

)
<∞ ,

we let xn = c
√
n where c >

√
2 log 2 , by B-C lemma we have

P
(

exists m s.t. ∆n,m > 2c

√
n

2n
i.o.

)
= 0 .

That is,

P
(

lim inf
n→∞

{
sup

1≤m≤2n
∆n,m ≤ 2c

√
n

2n

})
= 1 . (3.8)

One can show that (3.7) follows from .(3.8).
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3.5 The Markov Property

Let d be a positive integer. In this section we define the notion of a d-dimensional
Markov process and cite d-dimensional Brownian motion as an example. There
are several equivalent statements of the Markov property, and we spend some
time developing them.

A Brownian Motion in Several Dimensions

Definition 3.2. Let µ be a probability measure on Rd. Let B = {Bt}t≥0 be a
Rd-valued process, defined on some probability space (Ω,F ,P), and adapted to
the filtration F = {Ft}t≥0. B is called a d-dimensional Brownian motion
with initial distribution µ, with respect to F, if

(i) P (B0 ∈ A) = µ(A), for all A ∈ B
(
Rd
)
;

(ii) for 0 ≤ s < t, the increment Bt −Bs is independent of Fs and is normally
distributed with mean zero and covariance matrix equal to (t− s)Id, where
Id is the d× d identity matrix;

(iii) every sample path of B is continuous.

If the filtration F is exactly FB , the filtration generated by B, we say B is a
Brownian motion with initial distribution µ for short. If µ assigns measure one to
some singleton {x}, we say that B is a d-dimensional Brownian motion starting
at x. Besides, a one-dimensional Brownian motion is called linear.

Here is one way to construct a d-dimensional Brownian motion with initial
distribution µ. Let (Ω,F ,P) be a probability space so that X,B(1), · · · , B(d)

defined on it, where X taking values in Rd has distribution µ, B(i) is standard
brownian motion for 1 ≤ i ≤ d, and X,B(1), · · · , B(d) are independent. Then let

Bt = X + (B
(1)
t , · · · , B(d)

t ) for t ≥ 0 .

Then B is the desired object.

There is a second construction of d-dimensional Brownian motion with initial
distribution µ, a construction which motivates the concept of Markov family,
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to be introduced in this section. Let P (i), i = 1, . . . , d be d copies of Wiener
measure on (C[0,∞),B(C[0,∞))). Then P0 := P (1) × · · · × P (d) is a measure,
called d-dimensional Wiener measure, on

(
C[0,∞)d,B (C[0,∞))

d
)
. Under P0,

the coordinate mapping process B(t, ω) := ω(t) is a d-dimensional Brownian
motion starting at the origin. For x ∈ Rd, we define the probability measure Px

on B
(
C[0,∞)d

)
by

Px(A) = P0(A− x) for all A ∈ B (C[0,∞))
d
,

where A − x :=
{
ω ∈ C[0,∞)d : ω(·) + x ∈ A

}
. Under Px, the coordinate map-

ping process B = {Bt}t≥0 is a d-dimensional Brownian motion starting at x.
Finally, for a probability measure µ on Rd, we define Pµ on B

(
C[0,∞)d

)
by

Pµ(A) =

∫
Rd

Px(A)µ(dx) , for all ∈ B (C[0,∞))
d
.

Infact, one can show that the mapping x 7→ Px(A) ;Rd → [0, 1] is measurable
by using Dynkin’s π-λ theorem. Then it’s not hard to check that under Pµ, the
coordinate mapping process B = {Bt}t≥0 is a d-dimensional Brownian motion
with initial distribution µ.

We giving a straight formulation of the facts for a Brownian motion.

Theorem 3.14 (Markov property). Let {Bt}t≥0 be a d-dimensional Brownian
motion with initial distribution µ. Then, for any s > 0, {B(t + s) − B(s)}t≥0

is again a Brownian motion started in the origin and it is independent of the
process {Bt : 0 ≤ t ≤ s}.

Proof. It is easy to check that {B(t + s) − B(s)}t≥0 satisfies the definition of
a d-dimensional Brownian motion. The independence statement follows directly
from the independence of the increments of a Brownian motion.

Definition 3.3. Given a Polish space E, we denote by B(E)
µ the completion of

the Borel σ-field B(E) with respect to the probability measure µ on (E,B(E)).

The universal σ-field is U(E) := ∩µB(E)
µ
, where the intersection is over all

probability measures µ. Besides, a real-valued U(E)/B(R)-measurable function
is said to be universally measurable.
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2.1 The Markov property and Blumenthal’s 0-1 law 37

0

0 s

Fig. 2.1. Brownian motion starts afresh at time s.

Note that two stochastic processes {X(t) : t � 0} and {Y (t) : t � 0} are called in-
dependent, if for any sets t1 , . . . , tn � 0 and s1 , . . . , sm � 0 of times the vectors
(X(t1), . . . , X(tn )) and (Y (s1), . . . , Y (sm )) are independent.

Theorem 2.3 (Markov property) Suppose that {B(t) : t � 0} is a Brownian motion
started in x ∈ Rd . Let s > 0, then the process {B(t + s)−B(s) : t � 0} is again a Brow-
nian motion started in the origin and it is independent of the process {B(t) : 0 � t � s}.

Proof. It is easy to check that {B(t + s) − B(s) : t � 0} satisfies the definition of
a d-dimensional Brownian motion. The independence statement follows directly from the
independence of the increments of a Brownian motion.

We now improve this result slightly and introduce some useful terminology.

Definition 2.4.

(a) A filtration on a probability space (Ω,F , P) is a family (F(t) : t � 0) of σ-
algebras such that F(s) ⊂ F(t) ⊂ F for all s < t.

(b) A probability space together with a filtration is called a filtered probability space.

(c) A stochastic process {X(t) : t � 0} defined on a filtered probability space with fil-
tration (F(t) : t � 0) is called adapted if X(t) is F(t)-measurable for
any t � 0. �

Suppose we have a Brownian motion {B(t) : t � 0} defined on some probability space,
then we can define a filtration (F0(t) : t � 0) by letting

F0(t) = σ
(
B(s) : 0 � s � t

)
be the σ-algebra generated by the random variables B(s), for 0 � s � t. With this
definition, the Brownian motion is obviously adapted to the filtration. Intuitively, this
σ-algebra contains all the information available from observing the process up to time t.

Figure 3.2: One-dimensional Brownian motion starts afresh at time s.

Proposition 3.15. U(E) is the universal σ-field on E. Then

(i) Let A ⊂ E. Then A ∈ U(E) iff for every p.m. µ on (E,B(E)), there exists
Bµ ∈ B(E)) so that A = Bµ µ-a.e..

(ii) Let f : E → R. Then f is universally measurable iff for each p.m. µ on
(E,B(E)), there is a Borel-measurable function gµ so that f = gµ µ-a.e..

Proof. Note that

B(E)
µ
= {A ⊂ E : ∃ B ∈ B(E) s.t. A = B µ-a.e.} ,

we get (i). (ii) is trivially follows from (i).

Definition 3.4. A d-dimensional Brownian family is a adapted Rd-valued
process B = {Bt}t≥0 on a filtrated measurable space (Ω,F , {Ft}t≥0), and a
family of probability measures {Px}x∈Rd such that

(i) for each A ∈ F , the mapping x 7→ Px(A) is universally measurable;

(ii) under each Px, B is a d-dimensional Brownian motion with respect to
{Ft}t≥0 and starting at x.

172



We have already seen how to construct a family of probability measures
{Px}x∈Rd on the canonical space

(
C[0,∞)d,B (C[0,∞))

d
)

so that the coordi-
nate mapping process, relative to the filtration it generates, is a Brownian motion
starting at x under any Px. With F = B

(
C[0,∞)d

)
, indeed, for this canonical

example of a d-dimensional Brownian family, the mapping x 7→ Px(A) is actually
Borel-measurable for each A ∈ F . The reason we formulate Definition 3.4 with
the weaker measurability condition is to allow expansion of F to a larger σ-field
(see 待补充 ).

B Markov peocesses and Markov families

Suppose now that {Xt}t≥0 is a Rd-valued stochastic process. Intuitively, the
Markov property says that if we know the process {Xt}t≥0 on the interval [0, s],
for the prediction of the future {Xs+t}t≥0 this is as useful as just knowing the
endpoint Xs. Moreover, a process is called a time-homogeneous Markov process
if it starts afresh at any fixed time s. We shall make make a rigorous definition.

Definition 3.5. Let µ be a p.m. on (Rd,B(Rd)). Let X = {Xt}t≥0 be a Rd-
valued adapted process defined on (Ω,F , {Ft}t≥0,P). X is called a Markov
process with respect to {Ft}t≥0, having initial distribution µ, if

(i) P(X0 ∈ A) = µ(A) for all A ∈ B(Rd);

(ii) for any t, s ≥ 0 and A ∈ B(Rd), we have

P(Xs+t ∈ A | Fs) = P(Xs+t ∈ A | Xs) a.s..

If a stochastic process X is called a Markov process without any reference to a
filtration, then the minimal filtration of X is implied.

Clearly, the regular conditional distribution of Xs+t given Xs exists, and we
denote it by Ps,t+s. That is, Ps,t+s is a probability kernel from (Rd,B(Rd)) to
itself, statisfying

P(Xs+t ∈ A|Xs) = Ps,t+s(Xs, A) a.s. for all A ∈ B(Rd) .
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If for any fixed t ≥ 0, the transition kernels Ps,t+s don’t depend on s, in other
words, Ps,t+s = P0,t for all s ≥ 0, then we say the Markov process is time-
homogeneous, and we denote Pt for Ps,t+s. In this note, we only discuss time-
homogeneous Markov processes. Clearly, for any x ∈ Rd, we have

P0(x,A) = δx(A) for every A ∈ B(Rd) . (3.9)

Moreover, We shoud emphsize that {Pt}t≥0 satisies the Chapman-Kolmogorov
(C-K) equation: For t, s ≥ 0, x ∈ Rd and A ∈ B(Rd),

Pt+s(x,A) =

∫
Rd

Pt(y,A)Ps(x,dy) . (3.10)

We say a family of probability kernels {Pt}t≥0 is a family of Markov transition
kernels if it satisfies (3.9) and (3.10). Recall the course of discrete-time Markov
chains can we recognise the pattern behind this definition: The Markov transi-
tion kernels {Pt}t≥0 plays the role of the transition matrix P in this setup: it
determinate the Markov process uniquely (up to the initial distribution).

Theorem 3.16. Let µ be a Borel probability measure on Rd. Let {Pt}t≥0 be
Markov transition kernels. Then X is a Markov process having Markov transition
kernels {Pt}t≥0 and initial distribution µ if and only if, for any n ≥ 1, Aj ∈
B(Rd), 0 ≤ j ≤ n, and 0 = t0 < t1 < · · · < tn <∞ we have

P(X(t0) ∈ A0, · · · , X(tn) ∈ An)

=

∫
A0

µ(dx0)
∫
A1

Pt1(x0,dx1) · · ·
∫
An

Ptn−tn−1
(xn−1,dxn) .

(3.11)

Proof. The necessity is trivial, we only show the sufficiency, i.e.,

P(Xs+t ∈ A | Fs) = Pt(Xs, A) a.s..

Let C = {X(t0) ∈ A0, · · · , X(tn) ∈ An} ∈ FX
s , where A0, · · · , An ∈ B(Rd) and

0 = t0 < t1 < · · · < tn = s. We firstly show that

E [Pt(Xs, A)1C ] = P(C,Xs+t ∈ A)

=

∫
A0

µ(dx0)
∫
A1

Pt1(x0,dx1) · · ·
∫
An

Ptn−tn−1
(xn−1,dxn)Pt(xn, A) .
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where the second equals sgin follows from (3.11). To see this, observe that for
D ∈ B(Rd),

E
[
1{X(s)∈D}1C

]
=

∫
A0

µ(dx0)
∫
A1

Pt1(x0,dx1) · · ·
∫
An

Ptn−tn−1(xn−1,dxn)1{xn∈D} .

Linearity implies that for simple functions f ,

E [f(X(s))1C ]

=

∫
A0

µ(dx0)
∫
A1

Pt1(x0,dx1) · · ·
∫
An

Ptn−tn−1
(xn−1,dxn)f(xn) ,

and the bounded convergence theorem implies that it is valid for bounded mea-
surable f , e.g., f(x) = Pt(x,A). Hence

E [Pt(Xs, A)1C ] = P(C,Xt+s ∈ A) .

Using π − λ theorem, we get the desired result.

Our experience with d-dimensional Brownian motion indicates that it is nota-
tionally and conceptually helpful to have a whole family of probability measures,
rather than just one. Toward this end, we define the concept of a Markov family.

Definition 3.6. Let {Pt}t≥0 be Markov transition kernels. A d-dimensional
Markov family is an adapted process X = {Xt}t≥0 defined on some filtrated
measurable space (Ω,F , {Ft}t≥0), together with a family of probability measures
{Px}x∈Rd such that

(i) for each A ∈ F , the mapping x 7→ Px(A) is universally measurable on Rd;

(ii) under probability measure Px, X is a Markov process with respect to
{Ft}t≥0, having transition kernels {Pt}t≥0 and starting at x. That is,
Px(X0 = x) = 1 and for every A ∈ B(Rd),

Px (Xs+t ∈ A|Fs) = Pt(Xs, A) Px-a.s.. (3.12)
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Firstly, let s = 0 in (3.12) we can see that Pt(x,A) = Px(Xt ∈ A). This gives
an intuitive explanation of Markov property. Secondly, for any Borel probability
measure µ on Rd. define Pµ on (Ω,F) by letting

Pµ(A) =

∫
Rd

Px(A)µ(dx) for all A ∈ F ,

then X is a Markov process with respect to F, having transition kernels {Pt}t≥0

and initial distribution µ.

It happens sometimes, for a given adapted process X = {Xt}t≥0 on a mea-
surable space (Ω,F , {Ft}t≥0), that one can construct a family of so-called shift
operators θs : Ω → Ω, s ≥ 0, such that each θs is measurable and

Xt (θsω) = Xt+s(ω) ∀ω ∈ Ω, s, t ≥ 0 .

The most obvious examples occur when Ω is either
(
Rd
)[0,∞) or C[0,∞)d, F is

the smallest σ-field containing all finite-dimensional cylinder sets, and X is the
coordinate mapping process X(t, ω) = ω(t). We can then define

(θsω) (t) = ω(s+ t), t ≥ 0 .

2.5. The Markov Property

(5.11) PX[XsE r o, .. ·, XS+t
n

_
1
E r n- 1 , XS+ln E rnl~]

= PX[XsE r o,···, XS+ln _' E r n- 1, XS+ln E rnIXs], PX-a.s.

77

We prove this statement by induction on n. For n = 0, it is obvious. Assume
it true for n - 1. A consequence of this assumption is that for any bounded,
Borel-measurable ({J: IRdn --+ IR,

(5.12) EX[({J(Xs"'" XS+ln_.)I~]= P[({J(X., ... , Xs+ln_)IXs], PX-a.s.

Now (c) implies that

(5.13) PX[XsE r o, ... , XS+ln_, E r n- 1, XS+ln E rnl~]

- EX[l PX[X E r.1~ ] Ig;"]- {XsErO xS+tn_1 ern-d s+tn n 8+tn -1 s

= EX[l{xsero xs+t ern_dPX[XS+ln E rnIXs+tn_.JI~]'n-'

Any a(XS+1n _ 1)-measurable random variable can be written as a Borel­
measurable function of Xs+tn_l (Chung (1974), p. 299), and so there exists a
Borel-measurable function 9 : IRd

--+ [0, I], such that PX[XS+!n E rn/xS+!n_l] =
g(XS+!n_')' a.s. PX. Setting tp(xo, ... ,Xn-l) ~ Iro(xo) ... lrn _ 1 (xn-dg(xn-J), we
can use (5.12) to replace ff', by a(Xs) in (5.13) and then, reversing the pre­
vious steps, to obtain (5.11). The proof of (d') is similar, although notation­
ally more complex. D

It happens sometimes, for a given process X = {Xl' ~; t ~ o} on a measur­
able space (n, ff), that one can construct a family of so-called shift operators
Os: n --+ n, s ~ 0, such that each Os is ff/ff-measurable and

(5.14) XS+I(W) = XI(Osw); IfWEn, s, t ~ 0.

The most obvious examples occur when n is either (lRd)lo.OO) of Remark 5.14
or CEO, oo)d of Remark 4.13, ff is the smallest a-field containing all finite­
dimensional cylinder sets, and X is the coordinate mapping process Xl(w) =
w(t). We can then define 0sw = w(s + '), i.e.,

(5.15) (OsW)(t) = w(s + t), t ~ 0.

Theorem 3.17. Let X = {Xt}t≥0 be a Markov family having transition kernels
{Pt}t≥0 defined on (Ω,F , {Ft}t≥0, {Px}x∈Rd). Let {θs}s≥0 be a family of shift-
operators. Then, for any bounded (or non-negative) random variavle Y ∈ FX

∞

and x ∈ Rd,
Ex [Y ◦ θs | Fs] = EXs

Y Px-a.s.,

where the right-hand side is the function x 7→ ExY evaluated at Xs.
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Proof. Firstly, we show that the theorem holds, if Y = 1{X∈C} where C is a
finite-dimensional rectangular cylinder set in (Rd)[0,∞). To see this, let

C = {ϕ : [0,∞) → Rd : ϕ(t0) ∈ A0, ϕ(t1) ∈ A1, · · · , ϕ(tn) ∈ An} ,

where 0 = t0 < t1 < · · · < tn < ∞, Aj ∈ B(Rd), 0 ≤ j ≤ n and n ≥ 1. Then
what we need to show is that

Px (X(s) ∈ A0, X(s+ t1) ∈ A1, · · · , X(s+ tn) ∈ An|Fs)

= 1{X(s)∈A0}

∫
A1

Pt1(X(s),dx1) · · ·
∫
An

Ptn−tn−1
(xn−1,dxn) ,

which can be proved by induction on n and by Markov property.

Secondly, using π−λ theorem, we get that the theorem holds if Y = 1{X∈A},
where A ∈ B(Rd)[0,∞). Finally, recalling that any bounded (or non-negative)
measureable Y ∈ σ(X), there exists a bounded (or non-negative) measurable
funciton f on

(
(Rd)[0,∞),B(Rd)

)
so that Y = f(X). So Y can be approximated

by simple functions
∑

i ci1{X∈Ai}, then we complete the proof.

C Brownian motion as a Markov process

The following lemma is useful when computing conditional probability or con-
ditional expectation, which can be shown by the canonical method in measure
theory and so we omit the proof.

Lemma 3.18. If ξ and η are E-valued random variables on (Ω,F ,P), G is a
sub-σ-field of F . Suppose ξ is independent of G and η ∈ G, then

L[(ξ, η)|G] = L[(ξ, η)|η] and L[(ξ, η)|η = y] = L[(ξ, y)] .

Suppose {Bt}t≥0is a d-dimensional Brownian, we denote FB =
{
FB

t

}
t≥0

the
filtration generated by B. By Theorem 3.14 and Lemma 3.18, or directly by
Theorem 3.16, we deduce that :

Theorem 3.19. {Bt}t≥0 is a Markov process with respect to {FB
t }t≥0, and the

probability kernel Pt(x, ·) is a Gaussian distribution with mean x and covariance
matrix t Id.
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Note that for t > 0, Pt(x, ·) has probability density, denoted by pt(x, y) pr
p(t, x, y), given by :

pt(x, y) = (2πt)−
d
2 exp

(
−‖x− y‖2

2t

)
for x, y ∈ Rd . (3.13)

so for A ∈ B(R)d we have, Pt(x,A) =
∫
A
p(t, x, y)dy. Besides, the C-K equation

is just the fact that the sum of two independent Gaussian random vectors is a
Gaussian random vector with the sum of the covariance matrices, can be rewritten
as

pt+s(x, y) =

∫
Rd

ps(x,dz)pt(z, y), for z ∈ Rd .

We give another example of the Markov process obtained from Brownian
motion.

Example 3.5. The one-dimensional refected Brownian motion {Xt}t≥0 defined
by

Xt = |Bt| , for all t ≥ 0 ,

is a Markov process. It’s not hard to show this by using Theorem 3.16. Moreover,
its transition kernel Pt(x, ·) is the law of |Z| for Z normally distributed with mean
x and variance t, which we call the modulus normal distribution with parameters
x and t.

We intend to improve Markov property of Brownian motion slightly. Suppose
that {Bt}t≥0 is a d-dimensional Brownian motion. In a first step, we improve
this and allow a slightly larger (augmented) σ-algebra F+

t defined by

F+
t =

⋂
s>t

FB
s (3.14)

Clearly, the family
{
F+

t

}
t≥0

is again a filtration and FB
t ⊂ F+

t . The fields {F+
t }

are nicer because they are right continuous:

⋂
t>s

F+
t =

⋂
t>s

( ⋂
u>t

FB
u

)
=
⋂
u>s

FB
u = F+

s .
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In other words, the F+
t allow us an “infinitesimal peek at the future”. As we will

see later, this property is very important in developing the theory. If f(h) > 0

for all h > 0, then in d = 1 the random variable

lim sup
h↓0

B(t+ h)−B(t)

f(h)

is measurable with respect to F+
t but not FB(t). We will see below that there

are no interesting examples, i.e., F+
t and FB(t) are the same (up to null sets).

Theorem 3.20. B = {Bt}t≥0 is a Markov processes with respect to {F+
t }t≥0

having the same transition kernals as in Theorem 3.19.

Proof. It suffices to show that, for t > s and A ∈ B(R)d we have, almost surely,

P(Bt ∈ A | F+
s ) = Pt−s(BsA) .

where the transition kernel Pt(x, ·) has density (3.13). To see this, take any h > 0,
note that

P
(
Bt ∈ A | F+

s

)
= E

(
P (Bt ∈ A | Fs+h) | F+

s

)
= E

(
Pt−s−h(B(s+ h), A) | F+

s

)
.

Note that P·(·, A) is bounded and continuous on (0,∞) × R, letting h ↓ 0, by
domainted convergence theorem, we have

P
(
Bt ∈ A | F+

s

)
= E

(
lim
h↓0

Pt−s−h(Bs+h, A) | F+
s

)
= Pt−s(Bs, A) .

We now complete the proof.

By Theorem 3.17, 3.19, 3.20, we have that for any bounded random variable
Y ∈ FB

∞ and any s ≥ 0,

E
[
Y ◦ θs|F+

s

]
= EB(s)Y = E

[
Y ◦ θs|FB

s

]
a.s..

Following this, we can show that :

Corollary 3.21. For any bounded random variable Y ∈ FB
∞,

E
[
Y |F+

s

]
= E

[
Y |FB

s

]
a.s.. (3.15)
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Proof. Indeed, it suffices to show (3.15) holds when Y = 1{B∈C} where C is a
finite-dimensional measurable rectangular cylinder. In this case, Y can be written
as Y1 · Y2 ◦ θs, where Y1 ∈ FB

s , Y2 ∈ FB
∞, and they are bounded. So

E
[
Y |F+

s

]
= Y1E

[
Y2 ◦ θs|F+

s

]
= E

[
Y |FB

s

]
a.s..

Form (3.15), we get the following theorem.

Theorem 3.22. For any s ≥ 0 and A ∈ F+
s , we can find C ∈ Fs so that

P(A∆C) = 0.

An alternative form of the (imporved) Markov property is the following one.
In fact, by Lemma 3.18, it implies Theorem 3.20.

Theorem 3.23. For every s ≥ 0 the process {B(t+s)−B(s)}t≥0 is independent
of the σ-algebra F+

s . In other words, conditional on F+
s , the process {B(t+ s)−

B(s)}t≥0 is a standard d-dimensional Brownian motion.

Evidently, this theorem follows from Theorem 3.22 directly. However, we will
give another heuristic and important proof.

Lemma 3.24. Let ξ and ξn, n ∈ N be E-valued random varibles on some prob-
ability space (Ω,F ,P) and ξn → ξ almost surely. Let G ⊂ F be a σ-field. If for
each n, ξn is independent of G, then ξ is independent of G.

Proof. For any f ∈ Cb(E) and bounded random variable η ∈ G, we have

E[f(ξn)η] = Ef(ξn) Eη .

Letting n → ∞, by the bounded convergence theorem, E[f(ξ)η] = Ef(ξ)Eη .
By Lusin’s theorem, for any bounded Borel measurable funciton f on E, this
equation still holds. Then the desired result follows.

Proof of Theorem 3.23. Pick a strictly decreasing sequence {sn : n ∈ N} converg-
ing to s. For any t1, · · · , tm ≥ 0, by Contiuty of sample paths, Markov property
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and Lemma 3.24, the vector

(B (t1 + s)−B(s), · · · , B (tm + s)−B(s))

= lim
j↑∞

(B (t1 + sj)−B (sj) , · · · , B (tm + sj)−B (sj)) a.s.

is independent of F+
s , and so is the process {B(t+ s)−B(s) : t ≥ 0}.

We now look at the germ σ-algebra F+(0), which heuristically comprises
all events defined in terms of Brownian motion on an infinitesimal small interval
to the right of the origin.

Theorem 3.25 (Blumenthal’s 0-1 law). Let {Bt}t≥0 be d-dimensional Brownian
motion starting form x ∈ Rd. Then F+

0 is trivial, i.e., for each A ∈ F+
0 ,

Px(A) ∈ {0, 1} . (3.16)

Proof. This 0-1 law follows from Corollary 3.22 directly. Or using Theorem 3.23
for s = 0, we see that FB(∞) := σ(B(t) : t ≥ 0) is independent of F+(0). This
applies in particular to A ∈ F+(0), which therefore is independent of itself, hence
has probability zero or one.

This result is very useful in studying the local behavior of Brownian paths. As
a first application we show that a standard linear Brownian motion has positive
and negative values and zeros in every small interval to the right of 0.

Theorem 3.26. Let {Bt}t≥0 be a standard linear Brownian motion. Define

τ = inf{t > 0 : Bt > 0} and σ0 = inf{t > 0 : Bt = 0} ,

then
P0(τ = 0) = P0(σ0 = 0) = 1 .

Proof. The event

{τ = 0} =

∞⋂
n=1

{ there is r ∈ Q ∩ (0, 1/n) such that B(r) > 0}

181



is clearly in F+
0 . Hence we just have to show that this event has positive proba-

bility. This follows, as P0(τ ≤ t) ≥ P0(Bt > 0) = 1/2 for t > 0. Hence

P0(τ = 0) ≥ 1

2

and we have shown the first part.

The same argument works replacing Bt > 0 by Bt < 0 and from these two
facts P0(σ0 = 0) = 1 follows, using the intermediate value property of continuous
functions.

A further application is a 0-1 law for the tail σ-algebra of a d-dimensional
Brownian motion. Define F ′

t = σ(Bs : s ≥ t). Let

T =
⋂
t≥0

F ′
t (3.17)

be the tail σ-algebra of all tail events.

Theorem 3.27 (Zero-one law for tail events). Let {Bt}t≥0 be a d-dimensional
Brownian motion starting at x ∈ Rd. Suppose A ∈ T is a tail event. Then

Px(A) ∈ {0, 1}.

Proof. It suffices to look at the case x = 0. Under the time inversion of Brownian
motion, the tail σ-algebra is mapped on the germ σ-algebra, which contains only
sets of probability zero or one, by Blumenthal’s 0− 1 law.

3.6 The strong Markov property

Heuristically, the Markov property states that Brownian motion is started anew
at each deterministic time instance. It is a crucial property of Brownian motion
that this holds also for stopping times but become false for random times.
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Theorem 3.28 (Strong Markov property). Let B = {Bt}t≥0 be a d-dimensional
Brownian motion with initial distribution µ defined on some probability space
(Ω,F ,P). Then, for every finite stopping time T of {F+(t)}t≥0, the process

{B(T + t)−B(T ) : t ≥ 0}

is a standard d-dimensional Brownian motion independent of F+
T .

Proof. We first show our statement for the stopping times Tn which discretely
approximate T from above,

Tn =

∞∑
k=1

k

2n
1{ k−1

2n ≤T< k
2n } for n ≥ 1 ,

see Lemma 0.9. Write Bn,k = {Bn,k(t)}t≥0 for the Brownian motion defined by
Bn,k(t) = B (t+ k/2n)−B (k/2n) , and Bn = {Bn(t)}t≥0 for the process defined
by Bn(t) = B (t+ Tn) − B (Tn). Suppose that C ∈ F+

Tn
. Then, for every event

{Bn ∈ A} , where A ∈ B(C[0,∞)), we have

P ({Bn ∈ A} ∩ C) =
∞∑
k=0

P ({Bn,k ∈ A} ∩ C ∩ {Tn = k/2n})

=

∞∑
k=0

P (Bn,k ∈ A)P (C ∩ {Tn = k/2n})

using that {Bn,k ∈ A} is independent of C ∩ {Tn = k/2n} ∈ F+ (k/2n). Now,
by Markov property of Brownian motion, P (Bn,k ∈ A) = P (B ∈ A) does not
depend on n, k and hence we get

P ({Bn ∈ A} ∩ C) =
∞∑
k=0

P (Bn,k ∈ A)P (C ∩ {Tn = k/2n})

= P (B ∈ A)

∞∑
k=0

P (C ∩ {Tn = k/2n}) = P(B ∈ A)P(C)

which shows that Bn is a standrad Brownian motion and independent of F+
Tn

⊃
F+

T . Take any 0 ≤ t1 < · · · < tj <∞, then

(B(t1 + T )−B(T ), · · · , B(tj + T )−B(T ))

= lim
n↑∞

(B (t1 + Tn)−B (Tn) , · · · , B (tj + Tn)−B (Tn))
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is independent of F+
T , by Lemma 3.24 and has the same distribution as (B(t1 +

Tn)−B(Tn), · · · , B(tj +Tn)−B(Tn)). Thus {B(t+T )−B(T )}t≥0 is a stardand
d-dimensional Brownian motion and is independent of F+

T .

We given an exanmple that the strong Markov property become false for
random times.

Example 3.6. Let

τ = inf
{
t ≥ 0 : Bt = max

0≤s≤1
Bs

}
.

It is intuitively clear that τ is a finite random time, but not a stopping time of
{F+(t)}t≥0. From Theorem 3.26, we can see that

P(0 < τ < 1) = 1 .

Observe that the increment B(τ + t) − B(τ) is non-positive in a small neigh-
bourhood to the right of 0, which contradicts the strong Markov property and
Theorem 3.26.

A Strong Markov Processes and Families

Definition 3.7. Let µ a Borel probability measure on Rd. A progressively mea-
surable, d-dimensional process X = {Xt}t≥0 on some (Ω,F , {Ft}t≥0,P) is said
to be a strong Markov process with transition kernel {Pt}t≥0 and initial dis-
tribution µ, if

(i) P (X0 ∈ A) = µ(A), for all A ∈ B
(
Rd
)
;

(ii) for any optional time S of {Ft}t≥0, t ≥ 0 and A ∈ B
(
Rd
)
,

P
(
XS+t ∈ A|F+

S

)
= P (XS+t ∈ A|XS)

= Pt(XS , A), a.s. on {S <∞} .

Sometimes we rewrite (ii) as the following form

P
(
XS+t ∈ A,S <∞|F+

S

)
= Pt(XS , A)1{S<∞} a.s..
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Definition 3.8. Let {Pt}t≥0 be Markov transition kernels on (Rd, (Rd)). A
d-dimensional strong Markov family is a progressively measurable process
X = {Xt}t≥0 on some filtrated measurable space (Ω,F , {Ft}t≥0) together with
a family of probability measure {Px}x∈Rd such that:

(i) for each A ∈ F , the mapping x 7→ Px(A) is universally measurable;

(ii) Under Px, X is a strong Markov process with respect to {Ft}t≥0 starting
at x. That is, Px(X(0) = x) = 1 and for every optional time S of {Ft}t≥0,
A ∈ B(Rd), and t ≥ 0,

Px

(
XS+t ∈ A|F+

S

)
= Pt(XS , A) Px-a.s. on {S <∞} .

Remark 3.13. An optional time of {Ft}t≥0 is a stopping time of
{
F+

t

}
t≥0

. Be-
cause of the assumption of progressive measurability, the random variable XS is
F+

S -measurable. Moreover, if S is a stopping time of {Ft}t≥0 , then XS is FS

measurable. In this case, we can take conditional expectations with respect to
FS on both sides of (ii) to obtain

Px (XS+t ∈ A|FS) = Pt(XS , A) Px-a.s. on {S <∞} .

Setting S equal to a constant s ≥ 0, we obtain that, every strong Markov family
is a Markov family. Likewise, every strong Markov process is a Markov pro-
cess. However, not every Markov family enjoys the strong Markov property; a
counterexample to this effect, involving a progressively measurable process X,
appears in Wentzell (1981), p. 161.

Remark 3.14. By Theorem 3.28 and Lemma 3.18, we have : A d-dimensional
Brownian family is a strong Markov family. A d-dimensional Brownian motion
is a strong Markov process.

Whenever S is an optional time of {Ft} and u > 0, then S + u is a stopping
time of {Ft}.This fact can be used to replace the constant s in the proof of
Theorem 3.17 by the optional time S, thereby obtaining the following result.
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Theorem 3.29. Let (Ω,F , {Ft}t≥0, {Xt}t≥0, {Pt}t≥0, {Px}x∈Rd) be a strong Markov
family. Let {θs}s≥0 be a family of shift-operators. Then, for any bounded (or
non-negative) random variavle Y ∈ FX

∞ any optional time S of {Ft}t≥0, and
x ∈ Rd,

Ex[Y ◦ θS |F+
S ] = EXS

Y Px-a.s. on {S <∞} .

Proof. Firstly, we show that the theorem holds, if Y = 1{X∈C}, where C is a
finite-dimensional rectangular cylinder set in (Rd)[0,∞). To see this, let

C = {ϕ : [0,∞) → Rd : ϕ(t0) ∈ A0, ϕ(t1) ∈ A1, · · · , ϕ(tn) ∈ An} ,

where 0 = t0 < t1 < · · · < tn < ∞, Aj ∈ B(Rd), 0 ≤ j ≤ n and n ≥ 1. What we
need to show is that

Px

(
X(S) ∈ A0, X(S + t1) ∈ A1, · · · , X(S + tn) ∈ An|F+

S

)
= 1{XS∈A0}

∫
A1

Pt1(XS ,dx1) · · ·
∫
An

Ptn−tn−1
(xn−1,dxn) ,

which can be proved by induction on n and by strong Markov property.

Secondly, using π−λ theorem, we get that the theorem holds if Y = 1{X∈A},
where A ∈ B(Rd)[0,∞). Finally, recalling that any bounded (or non-negative)
measureable Y ∈ FX

∞, there exists a bounded (or non-negative) measurable funci-
ton f on

(
(Rd)[0,∞),B(Rd)

)
so that Y = f(X). So Y can be approximated by

simple functions
∑

i ci1{X∈Ai}, then we complete the proof.

For right-continuous processes a slight extension of the strong Markov prop-
erty is given.

Proposition 3.30. Let (Ω,F , {Ft}t≥0, {Xt}t≥0 , {Pt}t≥0 , {Px}x∈Rd) be a strong
Markov family, and the process X be right-continuous. Let S be an optional time
of {Ft}. Let T an F+

S -measurable random time satisfying S(ω) ≤ T (ω) for all
ω. Then, for any x ∈ Rd and A ∈ B(Rd),

Px

(
XT ∈ A|F+

S

)
= PT−S(XS , A) Px-a.s. on {T <∞} .
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Proof. It suffices to show that for f ∈ C0(Rd),

Ex

(
f(XT )|F+

S

)
=

∫
f(y)PT−S(XS ,dy) Px-a.s.on {T <∞} .

We first show our statement for the stopping times Tn which discretely approxi-
mate T from above,

Tn =

∞∑
k=1

(S +
k

2n
) 1{ k−1

2n ≤T−S< k
2n } +∞T=∞ for n ≥ 1 ,

It’s easy to see that

Ex

(
f(XTn

)|F+
S

)
=

∫
f(y)PTn−S(XS ,dy) Px-a.s. on {T <∞} .

The bounded convergence theorem for conditional expectations and the right-
continuity of X imply that the left-hand side converges to The bounded conver-
gence theorem for conditional expectations and the rightcontinuity of X imply
that the left-hand side converges to Ex

(
f(XT )|F+

S

)
as n → ∞. Since Eyf (Xt)

is right-continuous in t for every y ∈ Rd, the right-hand side converges to the
desired integral.

B Feller property

Suppose (Ω,F , {Ft}t≥0, {Xt}t≥0, {Pt}t≥0, {Px}x∈Rd) is a Markov family. If for
any f ∈ C0(Rd) and t ≥ 0, the function

x 7→ Exf (Xt) =

∫
f(y)Pt(x,dy)

is continuous on Rd, then we say that {Xt}t≥0 has Feller property.

As an example, for a d-dimensional Brownian family, it’s obviously a Markov
family. Besides, for any f ∈ C0(Rd) and t ≥ 0, the function

x 7→ Exf (Bt) =

∫
f(y)pt(x, y)dy ,

where pt(x, y) = (2πt)−d/2 exp{−‖x− y‖2

2t
} ,

is obviously continuous on Rd, so it has Feller property.
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Infact, every right-contionuous Markov family with Feller property has the
strong Markov property:

Theorem 3.31. (Ω,F , {Ft}t≥0, {Xt}t≥0, {Pt}t≥0, {Px}x∈Rd) is a right contin-
uous Markov family with Feller property. Let {θs}s≥0 be a family of shift-
operators. Let (s, ω) 7→ Ys(ω) ; [0,∞) × Ω → R be bounded (or non-negative)
and B([0,∞)) × FX

∞ measurable. Then for any optional time S of {Ft}t≥0 and
x ∈ Rd, we have

Ex

[
YS ◦ θS |F+

S

]
= EXS

YS Px-a.s. on {S <∞} .

where EXS
YS is the function φ(s, x) = ExYs evaluated at (S,XS).

Remark 3.15. Clearly, Y :
(
[0,∞)× Ω,B([0,∞))×FX

∞
)
→ (R,B(R)) is measur-

able and bounded (or non-negative) if and only if there exists

f :
(
[0,∞)× (Rd)[0,∞),B([0,∞))× B(Rd)[0,∞)

)
→ (R,B(R))

is measurable and bounded (or non-negative) so that Ys(ω) = f(s,X(ω)). There-
fore, Theorem 3.31 is equivalent to say for the function f above,

Ex

[
f(S,X ◦ θS)|F+

S

]
= EXS

f(S,X) Px-a.s. on {S <∞} . (3.18)

where EXS
f(S,X) is the function φ(s, x) = Exf(s,X) evaluated at (S,XS).

Proof. Step 1. We first prove the (3.18) for the stopping times Sn defined by

Sn =

∞∑
k=1

k

2n
1{ k−1

2n ≤S< k
2n } +∞ 1{S=∞} for n ≥ 1 .

We showed that {Sn} are stopping times of {Ft}t≥0 and F+
S = ∩nF(Sn) in

Lemma 0.9, 0.10. We break things down according to the value of Sn apply the
Markov property, and put the pieces back together. For A ∈ FSn

,

Ex

[
f(Sn, X ◦ θSn)1{Sn<∞}1A

]
=

∞∑
k=1

Ex

[
f(k/2n, X ◦ θk/2n)1{Sn=k/2n}1A

]
.
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Now since A ∈ FSn
, A ∩ {Sn = k/2n} ∈ F(k/2n), it follows from the Markov

property that the above sum is
∞∑

n=1

Ex

[
EX(k/2n)f(k/2

n, X)1{Sn=k/2n}1A
]
= Ex

[
φ(Sn, X(Sn))1{Sn<∞}1A

]
.

Thus we have

Ex [f(Sn, XθSn)|F(Sn)] = φ(Sn, X(Sn)) Px-a.s. on {Sn <∞} . (3.19)

Step 2. To be able to taking limits as n→ ∞ in (3.19), we restrict our attention
to f ’s of the form

f(s, ϕ) = h(s)

m∏
j=0

fj (ϕ (tj)) for s ≥ 0, ϕ ∈ (Rd)[0,∞) ,

where 0 = t0 < t1 < . . . < tm and fj ∈ C0(Rd) and h ∈ C0(R). The Feller
property implies that x →

∫
fj(y)Pt(x,dy) is continuous. From this, it follows

that

φ(s, x) = ExYs = Exf(s,X)

= h(s)f0(x)

∫
f1(y1)Pt1(x,dy1) · · ·

∫
fm(ym)Ptm−tm−1

(ym−1,dym)

is bounded and continuous on [0,∞)×Rd. By (3.19) and {Sn <∞} = {S <∞}
we have

Ex

[
YSn

◦ θSn
|F+

S

]
= Ex

[
φ(Sn, X(Sn))|F+

S

]
Px-a.s. on{S <∞}

Now, as n → ∞, Sn ↓ S, by the right-continuity of sample paths, X (Sn) →
XS , φ (Sn, X (Sn) , ) → φ(S,XS) and

f(Sn, X ◦ θSn) = h(Sn)

m∏
j=0

fj (X(Sn + tj))

→ h(S)

m∏
j=0

fj (X(S + tj)) = f(S,X ◦ θS) ,

so the bounded convergence theorem for conditional expectation implies

Ex

[
f(S,X ◦ θS)|F+

S

]
= Ex

[
φ(S,X(S))|F+

S

]
Px-a.s. on {S <∞} .
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Step 3. To complete the proof now, we will apply the canonical method. We
let H be the collection of f for which (3.18) holds. Firstly, we show that (3.18)
holds for f = 1C that C has the form

C = H × {ϕ ∈ (Rd)[0,∞) : ϕ(t0) ∈ G0, ϕ(t1) ∈ G1, · · · , ϕ(tm) ∈ Gm}

where 0 = t0 < t1 < · · · < tn < ∞, and H, Gj are bounded open sets in [0,∞)

and Rd, sespectively. Pick {h(n)}, {f (n)j } in C0(R) and C0(Rd) respectively, that
hn ↑ 1H , and fnj ↑ 1Gj

as n ↑ ∞. The facts that (3.18) holds for

f (n)(s, ϕ) = h(n)(s)

m∏
j=1

f
(n)
j (ϕ (tj))

and bounded convergence theorem implies that f = 1C ∈ H. Secondly, using
π − λ theorem, we get that the theorem holds if f = 1A is the incicator function
of any A ∈ B([0,∞))× B(Rd)[0,∞). Finally, recalling that any bounded (or non-
negative) measureable f can be approximated by simple functions, we complete
the proof.

3.7 Path properties
Part of the appeal of Brownian motion lies in the fact that the distribution of
certain of its functionals can be obtained in closed form. In this section, if not
specifically stated, we always suppose {Bt}t≥0 a standard one-dimensional Brow-
nian motion on (Ω,F ,P0). Perhaps the most fundamental of these functionals is
the passage time Ta to a level a ∈ R, defined by

Ta := inf {t ≥ 0 : Bt = a} .

We recall that a passage time for a continuous process is a stopping time (Example
0.6). This application of the strong Markov property (Theorem 3.31) shows why
we want to allow the function f that we apply to the shifted path to depend on
the stopping time.
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Theorem 3.32 (Reflection principle). Let {Bt}t≥0 be a standard Brownian mo-
tion on (Ω,F ,P0). Then the process {B∗

t }t≥0 called Brownian motion reflected
at a and defined by

B∗
t :=

{
Bt , t ≤ Ta ;

2a−Bt , t > Ta .

is also a standard Brownian motion.

Proof. Clearly, evert sample path of B∗ is continuous, so it suffices to show
that B∗ has the same finite-distribution as B. Without loss of generality, let
a > 0. Then we shall show that for any n ≥ 1, Aj ∈ B(R), 1 ≤ j ≤ n and
0 = t0 < t1 < · · · < tn <∞

P0(B
∗(tj) ∈ Aj for all j) = P0(B(tj) ∈ Aj for all j) .

Note that, for any 1 ≤ m ≤ n,

P
(
B(tj) ∈ Aj , j < m; tm−1 ≤ Ta < tm; B(tj) ∈ 2a−Aj , j ≥ m | F+

Ta

)
= 1{B(tj)∈Aj ,j<m; tm−1≤Ta} P0

(
2a−B(tj) ∈ Aj , j ≥ m,Ta < tm | F+

Ta

)
.

By strong Markov property we have,

P0

(
2B(Ta)−B(tj) ∈ Aj , j ≥ m,Ta < tm | F+

Ta

)
= P0

(
2B ◦ θTa

(0)−B ◦ θTa
(tj − Ta) ∈ Aj , j ≥ m,Ta < tm | F+

Ta

)
= E0

(
f(Ta, B ◦ θTa

) | F+
Ta

)
,

where f : [0,∞)× C[0,∞) → R is given by

f(t, ϕ) = 1{t<tm}1{2ϕ(0)−ϕ(tj−t)∈Aj ,j≥m} .

We omit the proof that f is measurable and compute that

ϕ(t, x) := Exf(t, B) = 1{t<tm}Px(2x−B(tj − t) ∈ Aj , j ≥ m)

= 1{t<tm}Px(B(tj − t) ∈ Aj , j ≥ m)

= 1{t<tm}

∫
Am

ptm−t(x,dym) · · ·
∫
An

ptn−tn−1
(a,dyn)
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the last equals sign is because under Px, {Bt}t≥0 and {2x−Bt}t≥0 has the same
distribution. Thus by strong Markov property (Theorem 3.31),

P0

(
2a−B(tj) ∈ Aj , j ≥ m,Ta < tm | F+

Ta

)
= 1{Ta<tm}

∫
Am

ptm−Ta
(a,dym) · · ·

∫
An

ptn−tn−1
(a,dyn)

= P0

(
B(tj) ∈ Aj , j ≥ m,Ta < tm | F+

Ta

)
.

Then we get

P
(
B(tj) ∈ Aj , j < m; tm−1 ≤ Ta < tm; B(tj) ∈ 2a−Aj , j ≥ m | F+

Ta

)
= P

(
B(tj) ∈ Aj , j < m; tm−1 ≤ Ta < tm; B(tj) ∈ Aj , j ≥ m | F+

Ta

)
.

Since m is arbitary in {0, 1, · · · , n}, we get

P0(B
∗(tj) ∈ Aj for all j) = P0(B(tj) ∈ Aj for all j) .

Exercise 3.1. Show the reflection principle by using Proposition 3.30.

There is a more general result which implies the reflection principle.

Theorem (Splicing). Let {Bt}t≥0 be a standard d-dimensional Brownian motion.
Let T be a optional time for {FB

t }t≥0. Let {Wt}t≥0 be a standard d-dimensional
Brownian motion, which is independent of F+

T . Then the spliced process

B∗(t) :=

{
B(t) , t ≤ T ;

B(T ) +W (t− T ) , t > T .
(3.20)

is also a standard d-dimensional Brownian motion.

A Hitting times

Our next goal is to compute the distribution of the hitting times Ta.

Theorem 3.33. Let {Bt}t≥0 be a standard, one-dimensional Brownian motion,
and for a ≥ 0, let Ta be the first passage time to a. Then

P0 (Ta ≤ t) = 2 P0 (Bt ≥ a) = P0 (|Bt| ≥ a) .
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Moreover, Ta is a continuous random variable with probability density

ρ(x) =
a√
2πx3

e−
a2

2x 1{x>0} (3.21)

Proof. Note that

{Ta ≤ t} = {Ta ≤ t, Bt ≥ a} ∪ {Ta ≤ t, Bt < a} .

By the continuity of paths,

P0 (Ta ≤ t, Bt ≥ a) = P0 (Bt ≥ a) ,

and
P0 (Ta ≤ t, Bt < a) = P0 (T

∗
a ≤ t, B∗

t > a) = P0 (B
∗
t > a)

where B∗ is defined in (3.20), and T ∗
a is the first hitting time of B∗, in fact

T ∗
a = Ta. By Reflection principle, B∗ is a standard Brownian motion under P0,

thus we have
P0 (Ta ≤ t) = 2P(Bt > a) = P0(|Bt| > a) .

Clearly, P0(Ta <∞) = 1. Thus Ta is a random variable. On the other hand,

P0 (Ta ≤ t) = 2P0 (Bt > a) = 2

∫ ∞

a

1√
2πt

e−
y2

2t dy .

Then we can compute the density of Ta.

Theorem 3.34. Under P0, {Ta}a≥0 has stationary independent increments. is
an increasing Markov process with transition kernel given by the densities

pa(t, s) =
a√

2π(s− t)3
exp

{
− a2

2(s− t)

}
1{s>t}, for a > 0 .

This process is called the stable subordinator of index 1/2.

Proof. The first step is to notice that if 0 < a < b then

Tb − Ta = inf{t ≥ 0 : B(Ta + t)−B(Ta) = b− a} P0-a.s..
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Let W (t) = B(Ta + t)−B(Ta) and {TW
a }a≥0 the hitting times of W . By strong

Markov property (Theorem 3.28),

L[Tb − Ta] = L[TW
b−a] = L[Tb−a] .

To show that the increments are independent, let 0 = a0 < a1 . . . < an < ∞,
let fj , 1 ≤ j ≤ n be bounded and measurable, and let Fj = fj

(
Taj

− Tai−1

)
.

Conditioning on F+(Tan−1
) and using the preceding calculation we have

E0

(
n∏

i=1

Fj

)
= E0

(
n−1∏
i=1

Fj · E0

[
Fn|F+

Tan−1

])
= E0

(
n−1∏
i=1

Fj

)
E0Fn .

By induction, it follows that E0Π
n
j=1Fj = Πn

j=1E0Fj , which implies the desired
conclusion. The densities of transition kernels given by 3.21.

It is easy to determine the Laplace transform

φa(λ) = E0 exp (−λTa) for a ≥ 0

To do this, we start by observing that Theorem 3.34 implies

φx(λ)φy(λ) = φx+y(λ) .

It follows easily from this that φa(λ) = exp(−ac(λ)). To identify c(λ), recall that
L(Ta) = implies

E exp (−Ta) = E exp
(
−a2T1

)
so ac(1) = c

(
a2
)
, i.e., c(λ) = c(1)

√
λ. Since all of our arguments also apply to

σBt we cannot hope to compute c(1). Later we will use martingale method to
show that

E0 (exp (−λTa)) = exp(−a
√
2λ) .

Also, we can using Theorem 3.33 to compute this directly.

Exercise 3.2. Show that P0 (limb→a Tb = Ta) = 1 for all a ∈ R.
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B Running Maximum

Set {Bt}t≥0 a one-dimensional Brownian motion on (Ω,F , {Px}x∈R). Define the
running maximum(or maximum-to-date)

Mt = max
0≤s≤t

Bs .

A priori it is not at all clear what the distribution of this random variable is, but
we can determine it as a consequence of the reflection principle: Note that

{Mt > a} = {Ta < t} , P0-a.s.

combine this and Theorem 3.33 , we get:

Theorem 3.35. Under P0, for each t > 0, the distribution of Mt is given by

P0(Mt > a) = P0(|Bt| > a), for all a > 0 .

In other words, Mt as a modulus normal distribution with parameters 0 and t.

Remark 3.16. For x > y, using reflection principle to compute

P (Bt ≤ y < x ≤Mt) ,

we can show that for t > 0, (Mt, Bt) is a continuous random vector, with density:

2(2x− y)√
2πt3

exp
{
− (2x− y)2

2t

}
1{x≥y,x≥0}

Example 3.7 (Large law of number). {Bt}t≥0 is a standard Brownian motion,
then

Bt

t
→ 0 a.s.

To see this, by SLLN we have B(n)/n→ 0 almost surely. Then let

Xn = sup
n−1≤t≤n

(Bt −Bn) , Yn = inf
n−1≤t≤n

(Bt −Bn) ,

Then by Markov property, {Xn} is a i.i.d. sequence and X1 = M1, L[Y1] =
L[−M1], thus by SLLN again, we have

Xn

n
→ 0 and Yn

n
→ 0 a.s..

Therefore Bt/t→ 0 almost surely.
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We now exploit the Markov property to study the local and global maxima
of a standard Brownian motion.

Theorem 3.36. Let {Bt}t≥0 a standard Brownian motion. Then for any given
two nonoverlapping closed time intervals [a1, b1] and [a2, b2], i.e. b1 ≤ a2 , the
maxima of Brownian motion on them are different almost surely. In other words,

P0

(
max

a1≤t≤b1
Bt = max

a2≤t≤b2
Bt

)
= 0 .

40 Brownian motion as a strong Markov process

b2a2b1a1

m1

m2

m1 − B(b1)

m2 − B(a2)

Fig. 2.2. The random variables m1 − B(b1 ) and m2 − B(b2 ) are independent of the increment
B(a2 ) − B(b1 ).

(a) By the statement just proved, almost surely, all nonoverlapping pairs of nondegenerate
compact intervals with rational endpoints have different maxima. If Brownian motion
however has a non-strict local maximum, there are two such intervals where Brownian
motion has the same maximum.
(b) In particular, almost surely, the maximum over any nondegenerate compact interval
with rational endpoints is not attained at an endpoint. Hence every such interval contains
a local maximum, and the set of times where local maxima are attained is dense. As
every local maximum is strict, this set has at most the cardinality of the collection of these
intervals.
(c) Almost surely, for any rational number q ∈ [0, 1] the maximum in [0, q] and in [q, 1] are
different. Note that, if the global maximum is attained for two points t1 < t2 there exists a
rational number t1 < q < t2 for which the maximum in [0, q] and in [q, 1] agree.

2.2 The strong Markov property and the reflection principle

Heuristically, the Markov property states that Brownian motion is started anew at each
deterministic time instance. It is a crucial property of Brownian motion that this holds also
for an important class of random times. These random times are called stopping times.
The basic idea is that a random time T is a stopping time if we can decide whether {T�t}
by just knowing the path of the stochastic process up to time t. Think of the situation that
T is the first moment where some random event related to the process happens.

Definition 2.12. A random variable T with values in [0,∞], defined on a probability
space with filtration (F(t) : t � 0) is called a stopping time with respect to (F(t) : t � 0)
if {T � t} ∈ F(t), for every t � 0. �

Remark 2.13 We formulate some basic facts about stopping times in general:

• Every deterministic time t � 0 is a stopping time with respect to every filtra-
tion (F(t) : t � 0).

Figure 3.3: m̃1, B(a2)−B(b1) and m̃2.

Proof. Denote by m1 and m2, the maxima of Brownian motion on [a1, b1] and
[a2, b2] respectively. On the one hand, let

m1 −B(b1) = max
a1≤t≤b1

B(t)−B(b1) = max
0≤t≤b1−a1

B(b1 − t)−B(b1) =: m̃1 .

Since {B(b1− t)−B(b1)}0≤t≤b1−a1 is a standard Brownian motion (Theorem 3.2
(ii)), m̃1 has the same distribution as |B(b1−a1)| by Theorem 3.35. On the other
hand, let

m2 −B(a2) = max
0≤t≤b2−a2

(B(a2 + t)−B(a2)) =: m̃2 .
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Applying Theorem 3.14 and Theorem 3.35, we get that m̃2 has the same distri-
bution as |B(b2 − a2)|. Thus

{m1 = m2} = {m̃2 − m̃1 = B(a2)−B(a1)} ,

By Markov proprty, m̃2, m̃1, B(a2)−B(a1) are indenpendent continuous random
variable, hence this event has probability 0.

Corollary 3.37. Let {Bs}0≤s≤t a standard Brownian motion, then almost surely,

(i) every local maximum is a strict local maximum.

(ii) the set of times where the local maxima are attained is countable and dense.

(iii) the global maximum is attained at a unique time in (0, t).

Proof. (i). By Theorem 3.36, almost surely, all nonoverlapping pairs of nonde-
generate compact intervals with rational endpoints have different maxima. If
Brownian motion however has a non-strict local maximum, there are two such
intervals where Brownian motion has the same maximum.

(ii) In particular, almost surely, the maximum over any nondegenerate com-
pact interval with rational endpoints is not attained at an endpoint. Hence every
such interval contains a local maximum, and the set of times where local maxima
are attained is dense. As every local maximum is strict, this set has at most the
cardinality of the collection of these intervals.

(iii) Almost surely, for any rational number q ∈ [0, 1] the maximum in [0, q]

and in [q, 1] are different. Note that, if the global maximum is attained for two
points t1 < t2 there exists a rational number t1 < q < t2 for which the maximum
in [0, q] and in [q, 1] agree.

We now recited a famous theorem of Paul Lévy, which shows that the differ-
ence of the maximum process of a Brownian motion and the Brownian motion
itself is a reflected Brownian motion. See Figure 3.4.

Theorem 3.38 (Paul Lévy). Let {Mt}t≥0 be the running maximum of stan-
dard Brownian motion {Bt}t≥0. Then, the process {Mt − Bt}t≥0 is a reflected
Brownian motion.
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50 Brownian motion as a strong Markov process

We now prove a famous theorem of Paul Lévy, which shows that the difference of the
maximum process of a Brownian motion and the Brownian motion itself is a reflected
Brownian motion. To be precise, this means that the difference of the processes has the
same finite-dimensional distributions as a reflected Brownian motion, and is also almost
surely continuous.

Theorem 2.34 (Lévy 1948) Let {M(t) : t � 0} be the maximum process of a linear stan-
dard Brownian motion {B(t) : t � 0}, i.e. the process defined by

M(t) = max
0�s�t

B(s).

Then, the process {Y (t) : t � 0} defined by Y (t) = M(t) − B(t) is a reflected Brownian
motion.

0 100 200 300 400

0

0 100 200 300 400

0

B(t)

M (t)

M (t)−B(t)

t t

Fig. 2.5. On the left, the processes {B(t) : t � 0} with associated maximum process
{M (t) : t � 0} indicated by the dashed curve. On the right the process {M (t) − B(t) : t � 0}.

Proof. The main step is to show that the process {Y (t) : t � 0} is a Markov process and
its Markov transition kernel p(t, x, · ) has modulus normal distribution with parameters x

and t. Once this is established, it is immediate that the finite-dimensional distributions of
this process agree with those of a reflected Brownian motion. Obviously, {Y (t) : t � 0}
has almost surely continuous paths. For the main step, fix s > 0, consider the two processes
{B̂(t) : t � 0} defined by

B̂(t) = B(s + t) − B(s) for t � 0,

and {M̂(t) : t � 0} defined by

M̂(t) = max
0�u�t

B̂(u) for t � 0.

Because Y (s) is F+(s)-measurable, it suffices to check that conditional on F+(s), for
every t � 0, the random variable Y (s + t) has the same distribution as |Y (s) + B̂(t)|. In-
deed, this directly implies that {Y (t) : t � 0} is a Markov process with the same transition

Figure 3.4: Bt and Mt −Bt.

The main step is to show that the process {Mt −Bt}t≥0 is a Markov process
and its Markov transition kernel Pt(x, ·) has modulus normal distribution with
parameters x and t. Once this is established, it is immediate that the finite-
dimensional distributions of this process agree with those of a reflected Brownian
motion (Example 3.5). Obviously, {Mt − Bt}t≥0 has almost surely continuous
sample paths.

Proof. Fix s, t ≥ 0. We shall show that

L[Mt+s −Bt+s|FM−B
s ] = L[Mt+s −Bt+s|Ms −Bs] .

Let B̃ = {B̃u}u≥0 defined by B̃u = Bu+s−Bs for u ≥ 0 and M̃t = max0≤u≤t B̃(u).
Observe that Ms+t =Ms ∨ (Bs + M̃t), and hence

Mt+s −Bt+s =
(
Ms ∨ (Bs + M̃t)

)
−Bs+t

=
(
Ms −Bs

)
∨ M̃t −

(
Bs+t −Bs

) .
That is,

Mt+s −Bt+s =
(
Ms −Bs

)
∨ M̃t − B̃(t) .

Note that, by Markov property, B̃t and W̃t both are independent of FB
s ⊃ FM−B

t ,
it follows from Lemma 3.18 that

L
[(
Ms −Bs

)
∨ M̃t − B̃t|FM−B

s

]
= L

[(
Ms −Bs

)
∨ M̃t − B̃t|Ms −Bs

]
.
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To finish, by Lemma 3.18, for every y ≥ 0,

L
[(
Ms −Bs

)
∨ M̃t − B̃(t) |Ms −Bs = y

]
= L[y ∨Mt −Bt] .

Hence it suffices to check that, for y ≥ 0

L[y ∨Mt −Bt] = L[ |y +Bt| ] .

Let Wu = Bt−u−Bt for 0 ≤ u ≤ t, then W = {Wu}0≤u≤t is a standard Brownian
motion by Theorem 3.2 (ii). Let MW

t = max0≤u≤tWu, then almost surely,

y ∨Mt −Bt =
(
y −Bt

)
∨
(
Mt −Bt

)
=
(
y +Wt

)
∨MW

t .

For any a > 0, by reflection priciple,

P0

((
y +Wt

)
∨MW

t > a
)

= P0 (y +Wt > a) + P0

(
Wt < a− y, TW

a < t
)

= P0 (y +Wt > a) + P0 (Wt > a+ y)

= P0 (y +Wt > a) + P0 (−Wt > a+ y) = P0 (|y +Wt| > a) .

So the desired result follows.

Exercise 3.3. For each t ≥ 0, let

λ(t) = arg max
0≤s≤t

Bs,

notice that λ(t) is well-defined, since almost surely all the local maximum of
Brownian motion are distinct. Show that for s ≤ t,

P(λ(t) ≤ s) =
2

π
arcsin

√
s

t
.

C Zero points of Brownian Motion

Let B = {Bt}t≥0 be a standard, one-dimensional Brownian motion. In this
subsection we will investigate the (random) set

Z = {t ≥ 0 : Bt = 0} . (3.22)
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Because the paths of B is continuous, the set Z is closed. Furthermore, With
probability one, the Lebesgue measure of Z is 0, since Fubini’s theorem implies
that the expected Lebesgue measure of Z is 0:

E|Z| = E
∫ ∞

0

1{Bt=0} dt =
∫ ∞

0

P (Bt = 0) dt = 0 .

where |Z| denotes the Lebesgue measure of Z. Observe that for any fixed (non-
random) t > 0, the probability that t ∈ Z is 0, because P(Bt = 0) = 0. Hence,
because Q+ is countable,

P (Q+ ∩ Z 6= ∅) = 0 .

First, we introduce the famous arcsine law. Define the last zero point of B in
[0, t] as Lt, that is

Lt := sup{Z ∩ [0, t]} = sup{s ∈ [0, t] : Bs = 0} . (3.23)

Theorem 3.39 (Arcsin law). For any s ∈ [0, t],

P0(Lt ≤ s) = P0(Z ∩ (s, t] = ∅) = 2

π
arcsin

√
s

t
. (3.24)

Proof. By the continuity of paths, we have {Lt ≤ s} = {Z∩(s, t] = ∅} = {Bs+u >

0 for all 0 < u ≤ t − s} ∪ {Bs+u < 0 for all 0 < u ≤ t − s}. Thus by Markov
property,

P0(Lt ≤ s|FB
s ) = PBs

(T0 > t− s) .

So
P0 (Lt ≤ s) =

∫
ps(0, x)Px

(
T0 > t− s

)
dx .

Note that, by symmetry, Px(T0 > t − s) = P0(T|x| > t − s), the integral can be
rewritten as∫

ps(0, x)P0

(
|B(t− s)| ≤ |x|

)
dx =

∫
ps(0, x)P

(√
t− s|Z1| ≤ |x|

)
dx ,

where Z1 has distribution N(0, 1). Let Z2 has identical distribution and inde-
pendent with Z1, then∫

ps(0, x)P
(√
t− s|Z1| ≤ |x|

)
dx = P

(√
t− s|Z1| ≤

√
s|Z2|

)
,
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letting (Z1, Z2) = (R cosΘ, R sinΘ), we konw that Θ uniformly distributed in
[0, 2π], (and R has a Rayleigh distribution), thus

P
(√
t− s|Z1| ≤

√
s|Z2|

)
= P

(√
t− s| sinΘ| ≤

√
s| cosΘ|

)
= P

(
| tanΘ| ≤

√
s

t− s

)
=

2

π
arcsin

√
s

t
.

We complete the proof.

We will give a second proof of Theorem 3.26 using arcsin law.

Corollary 3.40. Let σ0 := inf {t > 0 : Bt = 0}, then P0 (σ0 = 0) = 1.

Proof. By the arcsine law we have, for any t > 0,

P0(0 < Lt < t) = 1 .

Thus σ0 ≤ t a.s. Clearly σ0 = 0 a.s..

Theorem 3.41. Almost surely, Z is a perfect set.1

Proof. As noted earlier, Z is closed from path-continuity. We divided Z into
three parts:

Z(ω) = {0} ∪ C−(ω) ∪ C+(ω) ,

where

C−(ω) = {t > 0 : ∃ tn ↑ t s.t. B (tn, ω) = 0} and ,

C+(ω) = {t > 0 : ∃ δ > 0 s.t. B(s, ω) 6= 0,∀ s ∈ (t− δ, t), but B(t, ω) = 0} .

Clearly, C−(ω) ⊂ d(Z(ω)), it suffices to show that C+(ω) ⊂ d(Z(ω)) almost
surely. Now, fix a rational number q > 0, and define νq by

νq = inf{t ≥ q : Bt = 0} ,
1In general topology, a subset of a topological space is perfect if it is closed and has no

isolated points.
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then one can see that C+(ω) ⊂ {νq(ω) : q ∈ Q+}. It is enough to show that,
almost surely, νq ∈ d(Z). By the strong Markov Property, the process

B(νq + t)−B(νq) = B(νq + t)

is a standard Brownian motion. Consequently, by Corollary 3.40,

inf{t > 0 : B(νq + t) = 0} = 0 a.s.

Thus νq ∈ d(Z) almost surely, as required.

Remark 3.17. It can be shown that every compact perfect set of Lebesgue measure
zero is homeomorphic to the Cantor set. Thus, with probability one, the set of
zeros of the Brownian path Bt in the unit interval is a homeomorphic image of
the Cantor set.

Fractal dimension∗ How “big” is the set Z ? To discuss this we need to discuss
the notion of a dimension of a set. There are two similar notions of dimension,
Hausdorff dimension and box dimension, which can give fractional dimensions
to sets. (There is a phrase “fractal dimension” which is used a lot in scientific
literature. As a rule, the people who use this phrase are not distinguishing
between Hausdorff and box dimension and could mean either one.) The notion
of dimension we will discuss here will be that of box dimension, but all the sets
we will discuss have Hausdorff dimension equal to their box dimension.

Suppose we have a bounded set A in d -dimensional space Rd. Suppose we
cover A with d -dimensional balls of diameter ϵ. How many such balls are needed?
If A is a line segment of length 1 (one-dimensional set), then ϵ−1 such balls are
needed. If A is a two-dimensional square, however, on the order of ϵ−2 such balls
are needed. One can see that for a standard k -dimensional set, we need ϵ−k such
balls. This leads us to define the ( box ) dimension of the set A to be the number
D such that for small ϵ the number of balls of diameter ϵ needed to cover A is
on the order of ϵ−D.

Example 3.8. Consider the fractal subset of [0, 1], the Cantor set. The Cantor
set A can be defined as a limit of approximate Cantor sets An. We start with
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A0 = [0, 1]. The next set A1 is obtained by removing the open middle interval
(1/3, 2/3), so that

A1 =

[
0,

1

3

]
∪
[
2

3
, 1

]
The second set A2 is obtained by removing the middle thirds of the two intervals
in A1, hence

A2 =

[
0,

1

9

]
∪
[
2

9
,
1

3

]
∪
[
2

3
,
7

9

]
∪
[
8

9
, 1

]
In general An+1 is obtained from An by removing the ”middle third” of each
interval. The Cantor set A is then the limit of these sets An

A =

∞⋂
n=1

An

Note that An consists of 2n intervals each of length 3−n. Suppose we try to cover
A by intervals of length 3−n [

k − 1

3n
,
k

3n

]
We need 2n such intervals. Hence the dimension D of the Cantor set is the
number such that 2n = (3−n)

−D
, i.e.,

D =
ln 2

ln 3
≈ 0.631

Now consider the set Z and consider Z1 = Z ∩ [0, 1]. We will try to cover Z1

by one-dimensional balls (i.e., intervals) of diameter (length) ϵ = 1/n. For ease
we will consider the n intervals[

k − 1

n
,
k

n

]
, k = 1, 2, . . . n

How many of these intervals are needed to cover Z1? Such an interval is needed
if Z1 ∩ [(k − 1)/n, k/n] 6= ∅. Note that, by arcsince law,

P (k, n) = P
(
Z1 ∩

[
k − 1

n
,
k

n

]
6= ∅
)

= 1− 2

π
arctan

√
k − 1

Therefore, the expected number of the intervals needed to cover Z1 looks like
n∑

k=1

P (k, n) =

n∑
k=1

[
1− 2

π
arctan

√
k − 1

]
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To estimate the sum, we need to consider the Taylor series for arctan (1/t) at
t = 0 (which requires remembering the derivative of arctan),

arctan 1

t
=
π

2
− t+O

(
t2
)

In other words, for x large,

arctanx ≈ π

2
− 1

x

Hence
n∑

k=1

P (k, n) ≈ 1 +

n∑
k=2

2

π
√
k − 1

≈ 2

π

∫ n

1

(x− 1)−1/2dx ≈ 4

π

√
n

Hence it takes on the order of
√
n intervals of length 1/n to cover Z1, or, in other

words,

Theorem. The fractal dimension of the zero set Z is 1/2.

3.8 The law of the iterated logarithm

In this section, we will always suppose {Bt}t≥0 is a standard one-dimensional
Brownian motion. Although at any given time t and for any open set U ⊂ R the
probability of the event {Bt ∈ U} is positive, over a long time Brownian motion
cannot grow arbitrarily fast. We have seen in Example 3.4 that,

lim
t→∞

B(t)

t
→ 0 a.s..

Whereas Proposition 3.6 ensures that

lim sup
t→∞

|B(t)|√
t

= ∞ a.s..

It is therefore natural to ask for the asymptotic smallest upper envelope of the
Brownian motion, i.e. for a function ψ : (1,∞) → R such that

lim sup
t→∞

B(t)

ψ(t)
= 1 .
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The law of the iterated logarithm (whose name comes from the answer to this
question but is by now firmly established for this type of upper-envelope results)
provides such a ‘gauge’ function, which determines the almost-sure asymptotic
growth of a Brownian motion.

Theorem 3.42 (Law of the Iterated Logarithm for Brownian motion). Let
{Bt}t≥0 be a standard one-dimensional Brownian motion. Then, almost surely,

lim sup
t→∞

B(t)√
2t log log t

= 1 .

Proof. Upper bound. The key to the proof is

P0 (Mt > a) = 2P0(Bt > a) = 2

∫ ∞

a√
t

1

2π
exp

{
−y

2

2

}
dy .

≤
√
t

πa
exp

{
−a

2

2t

}
,

in the last step we used that∫ ∞

x

exp
{
−y

2

2

}
dy ≤ 1

x
exp

{
−x

2

2

}
.

So, taking a =
√
tf(t), we get

P0

(
Mt >

√
tf(t)

)
≤ 1

π
√
f(t)

exp
{
−f(t)

2

}
(3.25)

If we choose f(t) = 2(1 + ϵ)2 log t, then (3.25) becomes

P0

(
Mt > (1 + ϵ)

√
2t log t

)
≤ 1

π(1 + ϵ)
√
2 log t

t−(1+ϵ)2 .

By Borel-Cantelli lemma, almose surely,

lim sup
n→∞

Mn√
2n logn

≤ 1 + ϵ .

If we replace log by log log, i.e., f(t) = 2(1 + ϵ)2 log log t, then we get that

P0 (Mt > (1 + ϵ)ψ(t)) ≤ 1

π(1 + ϵ)
√
2 log log t

(log t)−(1+ϵ)2 .

205



Let α > 1 and take t = αn. By Borel-Cantelli lemma, almose surely,

lim sup
n→∞

M(αn)

ψ(αn)
≤ 1 + ϵ . (3.26)

For t ∈ [αn, αn+1], we have

B(t)

ψ(t)
≤ M(αn+1)

ψ(αn+1)

ψ(αn+1)

ψ(αn)
.

Letting t→ ∞, then we get

lim sup
t→∞

B(t)√
2t log log t

≤ (1 + ϵ)
√
α .

Since ϵ and α is arbitary, we get the upper bound.

Lower bound. To show the lower bound, firstly we note that

P0(Bt ≥ (1− ϵ)ψ(t)) =

∫
(1−ϵ)

√
2 log log t

1

2π
e−y2/2dy

∼ 1

π(1− ϵ)
√
2 log log t

(log t)−(1−ϵ)2

But we can not use the second Borel-Cantelli lemma, since Bt are not indepen-
dent. So, to get independent events, we choose a strictly increasing sequence {tn}
tending to infinity, and

P0(B(tn+1)−B(tn) ≥ (1− ϵ)ψ(tn+1 − tn))

∼ 1

π(1− ϵ)
√
2 log log(tn+1 − tn)

[log(tn+1 − tn)]
−(1−ϵ)2

Let α > 1 and tn = αn. It follows from the second Borel-Cantelli lemma that,
almost surely,

B(αn+1)−B(αn) ≥ (1− ϵ)ψ(αn+1 − αn) i.o..

Therefore, alomst surely,

lim sup
n→∞

B(αn+1)

ψ(αn+1)
≥ (1− ϵ) lim

n→∞

ψ(αn+1 − αn)

ψ(αn+1)
+ lim sup

n→∞

B(αn)

ψ(αn)

ψ(αn)

ψ(αn+1)

≥ (1− ϵ)

√
α− 1

α
− 1

α
.
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In the last inequality we used a consequence of (3.26):

lim sup
n→∞

B(αn)

ψ(αn)
≥ lim inf

n→∞

B(αn)

ψ(αn)
≥ −1 .

Thus we get

lim sup
t→∞

B(t)√
2t log log t

≥ lim sup
n→∞

B(αn+1)

ψ(αn+1)
≥ (1− ϵ)

√
α− 1

α
− 1

α
.

Letting α→ ∞ and ϵ ↓ 0, the desired result follows.

Remark 3.18. By symmetry and time inversion, the following propositions are
equibalent: Almost surely,

(i) lim sup
t→∞

B(t)√
2t log log t

= 1 , (ii) lim inf
t→∞

B(t)√
2t log log t

= −1 ,

(iii) lim sup
t↓0

B(t)√
2t log log(1/t)

= 1 , (iv) lim inf
t↓0

B(t)√
2t log log(1/t)

= −1 .

Remark 3.19. It’s easy to see that Theorem 3.42 is euivalent to Theorem 1.37.
(In fact, the proof of these two are biscally the same.) Since, almost surely,

lim sup
t→∞

|Bt −B[t]|√
2t log log t

= 0 .

To see this, note that |Bt −B[t]| ≤ ξ[t], where

ξn := max
n≤t≤n+1

|Bt −Bn| for all n .

Clearly, ξn are i.i.d., and

lim sup
n→∞

ξn√
2n log logn

= 0 .

3.9 The martingale property
In the previous section we have taken a particular feature of Brownian motion, the
Markov property, and strong Markov property. In this section we follow a similar
plan, taking a different feature of Brownian motion, the martingale property, as
a starting point.
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Lemma. Let {Xt}t≥0 be a right continuous martingale adapted to a right con-
tinuous filtration {Ft}t≥0. If T is a bounded stopping time of {Ft}t≥0, then

EXT = EX0 .

Theorem 3.43. Let {Bt}t≥0 be a one-dimensional Brownian motion starting at
x. Then with respect to the σ-fields {F+

t }t≥0 defined in (3.14),

(i) {Bt}t≥0 is a continuous martingale ;

(ii) {B2
t − t}t≥0 is a continuous martingale ;

(iii)
{

exp
(
θBt − θ2

2 t
)}

t≥0
is a martingale (called exponential martingale) for

any θ ∈ R (or indeed, for θ ∈ C).

Proof. The Markov property implies that for any t ≥ s,

Ex

(
Bt|F+

s

)
= Bs + Ex(Bt −Bs|F+

s ) = Bs .

so (i) follows. To show (ii), writing B2
t = (Bs +Bt −Bs)

2 we have

Ex

(
B2

t |F+
s

)
= B2

s + Ex

(
(Bt −Bs)

2 |F+
s

)
= B2

s + (t− s)
.

To prove (iii), bringing exp (θBs) outside

Ex

(
exp {θBt} |F+

s

)
= exp {θBs}Ex

(
exp {θ (Bt −Bs)} |F+

s

)
= exp {θBs} exp

{
θ2(t− s)/2

}
.

We complete the proof.

Remark 3.20. The simple fact (ii) is a pointer to the development of stochastic
integrals; once that theory is developed, we shall be in a position to prove the
following startling converse to (ii):

Theorem (Lévy). Let {Xt}t≥0 be a continuous martingale with respect to {Ft}t≥0,
X0 = 0 and suppose that

{X2
t − t}t≥0 is a martingale with respect to {Ft}t≥0 .

Then X is a standard {Ft}-Brownian motion.
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Remark 3.21. These exponential martingales are extremely useful in many ways:
we use them to compute the Brownian first-passage distribution to a level, and we
derive the law of the iterated logarithm using them. One small point to note here
in connection with the exponential martingales is that if we define the Hermite
polynomials Hn(t, x) by

exp
{
θx− θ2

2
t

}
:=
∑
n≥0

θn

n!
Hn(t, x) .

Then, for 0 ≤ s ≤ t, (iii) implies that∑
n≥0

θn

n!
Ex

[
Hn (t, Bt) |F+

s

]
=
∑
n≥0

θn

n!
Hn (s,Bs) .

so, by comparing coefficients of θn, we deduce that for each n, {Hn (t, Bs)}t≥0 is
a martingale with respect to {F+

t }t≥0. It’s easy to check that H1(t, x) = x and
H2(t, x) = x2 − t. So in fact, (iii) implies (i) and (ii).

A Exit probabilities and expected exit times

We now use the martingale property and the optional stopping theorem to obtain
exit probabilities and expected exit times for a linear Brownian motion.

Theorem 3.44 (Exit probability). {Bt}t≥0 is a linear Brownian motion starting
at x ∈ (a, b). Let τ ≡ τ(a,b) := inf{t ≥ 0 : Bt /∈ (a, b)}, (clearly almost surely
τ = Ta ∧ Tb), then

Px

(
Bτ = a

)
= Px

(
Ta < Tb

)
=
x− a

b− a
,

Px

(
Bτ = b

)
= Px

(
Tb < Ta

)
=
b− x

b− a
.

(3.27)

Proof. Note that |Bτ∧t| ≤ |a| + |b| for each t, by optional stopping theorem we
have that

Ex(Bτ∧t) = Ex(B0) = x .

Letting t→ ∞ and using the bounded convergence theorem, it follows that

aPx

(
Bτ = a

)
+ bPx

(
Bτ = b

)
= x ,

Px

(
Bτ = a

)
+ Px

(
Bτ = b

)
= 1 .
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Solving this we obtain (3.27).

Lemma 3.45. Under Px, τ has a moment generating function,i.e., Ex e
θτ is

finite for some θ > 0. In particular, it has finite moments of all orders.

Proof. We have the crude inequality

sup
x∈(a,b)

Px(τ > 1) ≤ sup
x∈(a,b)

Px(B1 ∈ (a, b)) .

The right side can be expressed in terms of a normal distribution but it is sufficient
to see that it is strictly less than 1, and we denote it by δ.

The next step is a basic argument using the Markovian character of the pro-
cess. For any x ∈ (a, b) and n ≥ 1,

Px(τ > n) ≤ Px (B1, · · · , Bn ∈ [a, b]) ≤ δn , for all n .

In fact the argument above yields more. For any ϵ such that eϵδ < 1, we have

Ex e
ϵτ ≤

∞∑
n=1

eϵn Px(n− 1 < τ ≤ n) ≤
∞∑

n=1

eϵnδn−1 <∞ .

Theorem 3.46 (Mean exit time). {Bt}t≥0 is a linear Brownian motion starting
at x ∈ (a, b). Let τ ≡ τ(a,b) := inf{t ≥ 0 : Bt /∈ (a, b)}, then

Exτ = (x− a)(b− x) .

Proof. Note that

|B2
τ∧t − τ ∧ t| ≤ |a| ∨ |b|+ τ , for all t

by optional stopping theorem and domainted convergence theorem, we have that

Ex(B
2
τ − τ) = Ex(B(0)2) = x2

Thus
Exτ = ExB

2
τ − x2 = (x− a)(b− x) ,

as required, and in order to compute ExB
2
τ we used (3.27).
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Theorem 3.47. Let a ≥ 0, then E0 e−λTa = e−a
√
2λ for λ ≥ 0.

Proof. Using exponential martingales and we have

E0 exp
{
θBTa∧t −

θ2

2
Ta ∧ t

}
= 1 .

Taking θ =
√
2λ, letting t → ∞ and using the bounded convergence theorem

(since BTa∧t ≤ a P0-a.s.) gives

E0 exp
{√

2λa− λTa

}
= 1 .

So the desired result follows.

Theorem 3.48. For x ∈ (a, b), the Laplace transform of τ is given by:

Ex e−λτ =
sinh

√
2λ(b− x) + sinh

√
2λ(x− a)

sinh
√
2λ(b− a)

for λ > 0 .

Here sinh denotes the ”hyperbolic sine” function, as cosh denotes the ”hyper-
bolic cosine” function:

sinh θ = eθ − e−θ

2
, cosh θ = eθ + e−θ

2
.

Proof. Observe that

Ex e−λTa = Ex e−λτ1{Ta<Tb} + Ex e−λTa1{Ta>Tb}

= Ex e−λτ1{Ta<Tb} + Ex

[
e−λτEx

(
e−λ(Ta−τ)1{Ta>τ}|FT

)]
= Ex e−λτ1{Ta<Tb} + Ex e−λτ1{Ta>Tb} Eb e−λTa .

In the last equality we used the strong Markov property. Interchange the roles
of a and b to get a second equation, use Theorem 3.47, and solve to get

Ex e−λτ1{Ta<Tb} =
sinh

√
2λ(b− x)

sinh
√
2λ(b− a)

;

Ex e−λτ1{Tb<Ta} =
sinh

√
2λ(x− a)

sinh
√
2λ(b− a)

.

Then the desired result follows.
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B A general method

To obtain comprehensive information regarding the joint distribution of the time
and place of exit from (a, b), we use the more powerful exponential martingale.
Let us denote the exponential martingale (with parameter θ) by {Mt}t≥0, then
for every x ∈ (a, b):

ExMt∧τ = ExM0 = eθx .

Since {|Mt∧τ |} is bounded, we obtain by dominated convergence that

ExMτ = Ex exp
{
θBτ − θ2τ

2

}
= eθx .

Putting

fa(x) = Ex

(
exp

{
−θ

2τ

2

}
1{Bτ=a}

)
,

fb(x) = Ex

(
exp

{
−θ

2τ

2

}
1{Bτ=b}

)
.

We have the equation

eθx = eθafa(x) + eθbfb(x), x ∈ (a, b) . (3.28)

We have also the equation

fa(x) + fb(x) = Ex

(
exp

{
−θ

2τ

2

})
. (3.29)

Unlike the situation in Theorem 3.44, these two equations do not yield the three
unknowns involved. There are several ways of circumventing the difficulty. The
first one is to uncover a third hidden equation in (3.28):

e−θx = e−θafa(x) + e−θbfb(x), x ∈ (a, b) . (3.30)

Combine (3.28) and (3.30) can we slove fa(x) and fb(x). But this quickie method
depends on a lucky quirk. By contrast, the method developed here, though
much longer, belongs to the mainstream of probabilistic analysis and is of wide
applicability. It is especially charming in the setting of R1.

We begin with the observation that if x is the midpoint of the interval (a, b),
then fa(x) = fb(x) by symmetry, so that in this case (3.28) is solvable for fa(x).
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Changing the notation we fix x and consider the interval (x−h, x+h). We obtain
from (3.28) that

fx−h(x) =
eθx

eθ(x−h) + eθ(x+h)
=

1

eθh + e−θh

and consequently by (3.29),

Ex

(
exp

{
−θ

2

2
τ(x−h,x+h)

})
=

1

cosh(θh) (3.31)

With this foot in the door, we will push on to calculate fa(x). Recall x ∈ (a, b),

hence for sufficiently small h > 0 we have [x− h, x+ h] ⊂ (a, b) and so

τ(x−h,x+h) < τ(a,b)

We shall denote τ(x−h,x+h) by τh below. Now starting at x, the path upon its
exit from (x − h, x + h) will be at x − h or x + h with probability 1/2 each.
From the instant τh onward, the path moves as if it started at these two new
positions by the strong Markov property, because τh is a stopping time. This
verbal description is made symbolic below.

Ex

(
exp

{
−θ

2τ

2

}
1{Bτ=a}

)
= Ex

[
exp

{
−θ

2τh
2

}
EB(τh)

(
−θ

2τ

2
1{Bτ=a}

)]
.

Then,

fa(x) = Ex

(
exp

{
−θ

2τh
2

})
1

2
[fa(x− h) + fa(x+ h)] . (3.32)

Using (3.31) we may rewrite this as follows:

fa(x+ h)− 2fa(x) + fa(x− h)

h2
=

2 cosh(θh)− 2

h2
fa(x) . (3.33)

Letting h ↓ 0 we see that the left member in (3.33) converges to θ2fa(x). It is
also immediate from (3.32) that

fa(x) <
1

2
[fa(x− h) + fa(x+ h)] (3.34)

valid for a < x − h < x + h < b. Since fa is also bounded, (3.34) implies fa is
continuous (in fact convex) in (a, b).
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To prove this we write the condition in the form fa(x)− fa(x− h) ≤ fa(x+

h)− fa(x) from which we derive the inequalities

fa(x− νh)− fa(x− (ν + 1)h) ≤ fa(x+ h)− fa(x)

≤ fa(x+ (ν + 1)h)− fa(x+ νh)

valid for every integer ν ≥ 0. If we add these for values of ν from v = 0 to
ν = n− 1, we obtain the estimate
fa(x)− fa(x− nh)

n
≤ fa(x)−fa(x−h) ≤ fa(x+h)−fa(x) ≤

fa(x+ nh)− fa(x)

n
.

Letting n→ ∞, since fa is bounded, we get that f is continuous.

Now if fa has a second derivative f ′′a in (a, b), then an easy exercise in calculus
shows that the limit as h ↓ 0 of the left member in (3.33) is equal to f ′′a (x). What
is less easy is to show that a close converse is also true. This is known as Schwarz’s
theorem on generalized second derivative, a basic lemma in Fourier series. We
state it in the form needed below.

Theorem (Schwarz’s Theorem). Let f be continuous in (a, b) and suppose that

lim
h→0

f(x+ h)− 2f(x) + f(x− h)

h2
= φ(x) ∀x ∈ (a, b)

where φ ∈ C(a, b). Then f ∈ C2(a, b) and f ′′ = φ.

Since fa has been shown to be continuous, Schwarz’s theorem applied to (3.33)
yields the differential equation:

f ′′a (x) = θ2f(x), x ∈ (a, b) .

The most general solution of this equation is given by

fa(x) = Aeθx +Be−θx (3.35)

where A and B are two arbitrary constants. To determine these we compute the
limits of fa(x) as x→ a and x→ b from inside (a, b). From (3.32) and Theorem
3.44 we infer that

lim sup
x→b

fa(x) ≤ lim
x→b

Px(Bτ = a) = lim
x→b

b− x

b− a
= 0 ,

lim sup
x→b

fb(x) ≤ lim
x→b

Px(Bτ = b) = lim
x→b

x− a

b− a
= 1 .
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Since fa ≥ 0, the first relation above shows that limx→b fa(x) = 0, using (3.33)
we see that

eθb ≤ eθb lim inf
x→b

fb(x) .

so limx→b fb(x) = 1. Similarly we have

lim
x→a

fa(x) = 1, lim
x→a

fb(x) = 0

Thus we obtain from (3.35)

0 = Aeθb +Be−θb, 1 = Aeθa +Be−θa .

Solving for A and B and substituting into (3.35), we obtain

fa(x) =
sh θ(b− x)

sh θ(b− a)
, fb(x) =

sh θ(x− a)

sh θ(b− a)
.

Exercise 3.4. Show that for 0 ≤ θ < π2/2(b− a)2, we have

Ex eθτ(a,b) =
cos
(√

2θ
(
x− a+b

2

))
cos
(√

2θ
(
b−a
2

))
Prove that Ex eθτ(a,b) = +∞ for θ = π2/2(b− a)2.

C More martingales

Given the function f on R, f(x) = x2 we were able to subtract a suitable term
from f(Bt) to obtain a martingale. To get a feeling for what we wish to subtract
in the case of a general f, we look at the analogous problem for the simple random
walk {Sn}n≥0. A straightforward calculation gives, for f : Z → R

E [f (Sn+1) |σ (S1, . . . , Sn)]− f (Sn)

=
1

2
(f (Sn + 1)− 2f (Sn) + f (Sn − 1)) =

1

2
∆̃f (Sn) ,

where ∆̃ is the second difference operator ∆̃f(x) := f(x+1)− 2f(x) + f(x− 1).
Hence

f (Sn)−
1

2

n−1∑
k=0

∆̃f (Sk)

215



defines a (discrete time) martingale. In the Brownian motion case, one would
expect a similar result with ∆̃f replaced by its continuous analogue, the Laplacian

∆f(x) =

d∑
i=1

∂2f

∂x2i
.

Theorem 3.49. Let f ∈ C2(Rd), i.e., f : Rd → R is twice continuously differen-
tiable. Let {Bt}t≥0 be a d-dimensional Brownian motion. Further suppose that,
for all t ≥ 0 and x ∈ Rd, we have

Ex|f(Bt)| <∞ , Ex

∫ t

0

|∆f(Bs)|ds <∞ .

Then the process {Xt}t≥0 defined by

Xt = f(Bt)−
1

2

∫ t

0

∆f(Bs)ds

is a continuous martingale with respect to {F+
t }t≥0 under Px.

Proof. For any 0 ≤ s < t, by Markov property,

Ex[Xt|F+
s ]

= EBs [f(Bt−s)]−
1

2

∫ s

0

∆f(Bu)du−
∫ t−s

0

EBs

[
1

2
∆f(Bu)

]
du

Now, using integration by parts and 1
2∆yp(t, x, y) =

∂
∂tp(t, x, y), where p(t, x, y)

is the Brownian transition densities, we find

EBs

[
1

2
∆f(Bu)

]
=

1

2

∫
Rd

p(u,Bs, y)∆f(y)dy

=
1

2

∫
Rd

∆yp(u,Bs, y)f(y)dy =

∫
Rd

∂

∂u
p(u,Bs, y)f(y)dy .
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Hence by Fubini’s theorem,∫ t−s

0

EBs

[
1

2
∆f(Bu)

]
du

=

∫ t−s

0

du
∫
Rd

∂

∂u
p(u,Bs, y)f(y)dy

=

∫
Rd

f(y)dy
∫ t−s

0

∂

∂u
p(u,Bs, y)du

=

∫
Rd

f(y)dy lim
ϵ↓0

∫ t−s

ϵ

∂

∂u
p(u,Bs, y)du

=

∫
Rd

p(t− s,Bs, y)f(y)dy − lim
ϵ↓0

∫
Rd

p(ϵ, Bs, y)f(y)dy

= EBs
[f(Bt−s)]− f(Bs) .

This confirms the martingale property.

3.10 Dirichlet and Poisson problems in R1

In classical potential theory (see Kellogg [1]) there are a clutch of famous problems
which had their origins in electromagnetism. We begin by stating two of these
problems in Euclidean space Rd, where d is the dimension. Let D be a nonempty
bounded open set (called a “domain” when it is connected), and let ∂D denote
its boundary. Let ∆ denote the Laplacian, namely the differential operator

∆ =

d∑
j=1

(
∂

∂xj

)2

.

A function f defined in D is called harmonic there iff ∆f = 0 in D. This of course
requires that f is twice differentiable. If f is locally integrable in D, namely has
a finite Lebesgue integral over any compact subset of D, then it is harmonic in
D if and only if the following “surface averaging property” is true. Let B(x, δ)

denote the closed ball with center x and radius δ. For each x ∈ D and δ > 0 such
that B(x, δ) ⊂ D, we have

f(x) =
1

σ(∂B(x, δ))

∫
∂B(x,δ)

f(y)σ(dy) (3.36)
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where σ(dy) is the area measure on ∂B(x, δ). This alternative characterization of
harmonic function is known as Gauss’s theorem and plays a basic role in prob-
abilistic potential theory, because probability reasoning integrates better than
differentiates.

Dirichlet’s problem. Given D and a continuous function f on ∂D, to find a
function φ which is continuous in D̄ and satisfies:

∆φ = 0 in D ,

φ = f on ∂D .
(3.37)

Poisson’s problem. Given D and a bounded continuous function f in D, to
find a function φ which is continuous in D̄ and satisfies

∆φ = f in D ,

φ = 0 on ∂D .
(3.38)

We have stated these problems in the original forms, of which there are well-
known generalizations. As stated, a unique solution to either problem exists
provided that the boundary ∂D is not too irregular. Since we shall treat only the
one-dimensional case in this section, we need not be concerned with the general
difficulties.

In R1, a domain is just an bounded open nonempty interval I = (a, b). Its
boundary ∂I consists of the two points {a, b}. Since ∆f = f ′′, a harmonic func-
tion is just a linear function. The boundary function f reduces to two arbitrary
values assigned to the points a and b, and no question of its continuity arises.
Thus in R1 Dirichlet’s problem reads as follows.

Dirichlet’s Problem in R1. Given two arbitrary numbers f(a) and f(b),

to find a function φ which is linear in (a, b) and continuous in [a, b], so that
φ(a) = f(a), φ(b) = f(b).

This is a (junior) high school problem of analytic geometry. The solution is
given by

b− x

b− a
f(a) +

x− a

b− a
f(b) . (3.39)

Now we will write down the probabilistic solution, as follows

φ(x) = Ex[f(Bτ )] , x ∈ [a, b] (3.40)
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where τ = τ(a,b) = inf{t ≥ 0 : Bt /∈ (a, b)}. If we evaluate the right member of
(3.40) by Theorem 3.44, we see at once that it is the same as given in (3.39).
But we will prove that φ is the sought solution by the general method developed
in the last section, because the same pattern of proof works in any dimension.
Using the notation τh as in “the general method”, we obtain

φ(x) = Ex

[
EB(τh)f(Bτ )

]
=

1

2
[φ(x− h) + φ(x+ h)] , (3.41)

for x ∈ (a, b) and for h so that (x−h, x+h) ⊂ (a, b). This is the one-dimensional
case of Gauss’s criterion for harmonicity (3.36). Since φ is bounded (so it is locally
integrable), it follows from the criterion that φ is harmonic, namely linear. But we
can also invoke Schwarz’s Theorem to deduce this result, indeed the generalized
second derivative of φ is identically zero by (3.41).

It remains to show that as x → a or b from inside (a, b), φ(x) tends to
φ(a) = f(a) or φ(b) = f(b) respectively. This is a consequence of the probabilistic
relations below:

lim
x→a

Px (τ = Ta) = 1 , lim
x→b

Px (τ = Tb) = 1

which are immediate by Theorem 3.44. But since no such analogue is available
in dimension > 1, another proof more in the general spirit is indicated below.

Assuming (5.8), we have

φ(x) = Ex {f (X (Ta)) ; τ = Ta}+ Ex {f (X (Tb)) ; τ = Tb}

= P x {τ = Ta} f(a) + P x {τ = Tb} f(b)

and consequently

lim
x→a

φ(x) = 1 · f(a) + 0 · f(b) = f(a) ,

lim
x→b

φ(x) = 0 · f(a) + 1 · f(b) = f(b) .

Thus φ is continuous on [a, b].

Poisson’s Problem in R1. Given a bounded continuous function f in (a, b)

to find a function φ which is continuous in [a, b] such that
1

2
φ′′(x) = −f(x) for x ∈ (a, b) ;

φ(a) = φ(b) = 0 .

(3.42)
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The constants 1
2 and -1 in the differential equation are chosen for the sake of

convenience, as will become apparent below. This is a simple calculus problem
which can be solved by setting

φ(x) =

∫ x

a

∫ y

a

−2f(z)dz dy + cx+ d

=

∫ x

a

2(y − x)f(y)dy + cx+ d

and determining the constants d = −ca and

c =
1

b− a

∫ b

a

(b− y)f(y)dy

by the boundary conditions φ(a) = 0 and φ(b) = 0. Substituting these values for
c and d and rearranging we can write the solution above as

φ(x) =

∫ b

a

g(x, y)f(y)dy , (3.43)

where
g(x, y) =

2[(x ∧ y)− a] [b− (x ∨ y)]
b− a

, for x, y ∈ (a, b) . (3.44)

Note that g(x, y) > 0 in (a, b) and g(x, y) = g(y, x). We put g(x, y) = 0 outside
(a, b)× (a, b). The function g is known as the Green’s function for (a, b) because
representing the solution of (3.42) in the form (3.43) is an example of the classical
method of solving differential equations by Green’s functions.

Now we will write down the probabilistic solution of Poisson’s problem (3.42),
as follows:

φ(x) = Ex

(∫ τ

0

f(Bt)dt
)

for x ∈ [a, b] . (3.45)

Note that the integral above may be regarded as over (0, τ) so that f need be
defined in (a, b) only.

Clearly φ(a) = φ(b) = 0. To show that φ satisfies the differential equation,
we proceed by “the general method”. For x ∈ (a, b), and (x − h, x + h) ⊂ (a, b),
we have

Ex

(∫ τ

0

f(Bt)dt
)

= Ex

(∫ τh

0

f(Bt)dt
)
+ Ex

(∫ τ

τh

f(Bt)dt
)
,
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and by strong Markov property

Ex

(∫ τ

τh

f(Bt)dt
)

= Ex

[
Ex

(∫ τ

τh

f(Bt)dt
∣∣∣∣F(τh)

)]
= Ex

[
EB(τh)

(∫ τ

0

f(Bt)dt
)]

=
1

2
[φ(x+ h) + φ(x− h)] .

Put
ϖ(x, h) = Ex

(∫ τh

0

f (Bt)dt
)
.

Thus
φ(x) = ϖ(x, h) +

1

2
[φ(x+ h) + φ(x− h)] .

In order to use Schwartz’s Theorem, We rewrite the equality above as

φ(x+ h)− 2φ(x) + φ(x− h)

h2
= −2ϖ(x, h)

h2
.

Firstly, we show that φ is continuous in (a, b). Without loss of generality
we may suppose f ≤ 0; for the general case will follow from this case and f =

(−f−)− (−f+). Since f ≥ 0, ϖ ≥ 0, we have

φ(x) ≤ 1

2
[φ(x+ h) + φ(x− h)] ;

also φ(x) ≤ ‖f‖∞Exτ ≤ ‖f‖(b− a)2/4. Thus φ is continuous (in fact convex).

Next, we show that for each x ∈ (a, b),

lim
h↓0

ϖ(x, h)

h2
= lim

h↓0

1

h2
Ex

(∫ τh

0

f (Bt)dt
)

= f(x) .

It follows from Theorem 3.46 that

Ex

(∫ τh

0

f (B0)dt
)

= f(x)Ex(τh) = f(x)h2 .

So it suffices to show that

lim
h↓0

1

h2
Ex

(∫ τh

0

|f (Bt)− f (B0)|dt
)

= 0 . (3.46)
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Observe that for each t ∈ (0, τ), Bt ∈ (x− h, x+ h), then we have

1

h2
Ex

(∫ τh

0

|f (Bt)− f (B0)|dt
)

≤ sup
|y−x|<h

|f(y)− f(x)| ,

which implies (3.46). So using Schwartz’s Theorem, φ ∈ C2(a, b) with

φ′′ = −2f .

Finally, since

|φ(x)| ≤ ‖f‖Exτ = ‖f‖(x− a)(b− x) ,

φ(x) converges to zero as x→ a or x→ b. Thus φ is continuous in [a, b].

Green’s function If we equate the two solutions of Poisson’s problem given
in (3.43) and (3.45), we obtain

Ex

(∫ τ

0

f(Bt)dt
)

=

∫ b

a

g(x, y)f(y)dy (3.47)

for every bounded continuous f on (a, b). Let us put for x ∈ R and A ∈ B(R) :

V (x,A) = Ex

(∫ τ

0

1{Bt∈A} dt
)
.

Clearly, for every x, V (x, ·) is a (finite) measure on (R,B(R)). By canonical
method in measure theory, for any bounded Borel measurble function f we have∫

f(y)V (x,dy) = Ex

(∫ τ

0

f(Bt)dt
)
.

Then it follows from (3.47) that V is a finite transition kernel from (R,B(R)) to
itself, and

V (x,A) =

∫
A

g(x, y)dy .

In other words, V (x, ·) has g(x, ·) as its Radon-Nikodym derivative with respect
to the Lebesgue measure. The kernel V is sometimes called the potential of
the Brownian motion killed at τ. It is an important object for the study of this
process, since V (x,A) gives the expected occupation time of A starting form x.
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Exercise 3.5. Determine the measure H(x, ·) on ∂I so that the solution to Dirich-
let’s problem may be written as∫

∂I

f(y)H(x, dy)

The analogue in Rd is called the harmonic measure for I. It is known in the
classical theory that this measure may be obtained by taking the “interior normal
derivative” of g(x, y) with respect to y. Find out what this means in R1.

Feynman—Kac functional∗

As a final application of “the general method”, we will treat a fairly new problem.
Reversing the previous order of discussion, let us consider

φ(x) = Ex

(
exp

{∫ τ

0

q(Bt)dt
}
f(Bτ )

)
, x ∈ [a, b] (3.48)

where τ = τ(a,b) is the exit time of (a, b), q is a bounded continuous function
in [a, b], f as in Dirichlet’s problem. Clearly, φ(a) = f(a), φ(b) = f(b). The
exponential factor in (3.48) is called the Feynman-Kac functional. Let us write
e(u) =

∫ u

0
q(Bt)dt for u ≥ 0.

An immediate question is whether φ is finite. If q ≡ a constant c, and f ≡ 1,

then φ ≡ ∞ for sufficiently large c, by Exercise 3.4.
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Chapter 4

Brownian Motion and
Random Walk

The key to the developments in the section is that we can embed sums of mean
zero inde- pendent random variables (see Section 8.1) and martingales (see Sec-
tion 8.2) into Brownian motion and derive central limit theorems. These results
lead in Section 8.3 to CLTs for stationary sequences and in Section 8.4 to the
convergence of rescaled empirical distribu- tions to Brownian Bridge. Finally, in
Section 8.5 we use the embedding to prove a law of the iterated logarithm.

4.1 The Invariance Principle

A Space C[0,∞)

The sample spces for the Brownian motions we built in Sections 2 and 3 were,
respectively, the space R[0,∞) of all real-valued functions on [0,∞) and a space
Ω rich enough to carry a countable collection of independent, standard normal
random variables. The “canonical” space for Brownian motion, the one most
convenient for many future developments, is C[0,∞) the space of all continuous,
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real-valued functions on [0,∞) with metric

d (ω1, ω2) :=

∞∑
n=1

1

2n
pn(ω1 − ω2)

1 + pn(ω1 − ω2)
, where

pn(ω1 − ω2) := max
t∈[0,n]

|ω1(t)− ω2(t)| for all n .
(4.1)

In this section, we show how to construct a measure, called Wiener measure,
on this space so that the coordinate mapping process is Brownian motion. This
construction is given as the proof of Donsker’s invariance principle and involves
the notion of weak convergence of random walks to Brownian motion.

Lemma 4.1. C[0,∞) equipped tith the topology induced by d defined above, is a
complete, separable metric space.

Proof. It’s easy to see that d is a complete metric on C[0,∞). To see that C[0,∞)

is seperable, let

PQ := {p : [0,∞) : p is a ploynomimal with rational cofficients} .

Clearly, PQ is countable. By the Stone–Weierstrass theorem, PQ is dense in
C[0,∞), and hence the desired result follows.

Lemma 4.2. The Borel σ-algebra B(C[0,∞)) coinsides with the σ-algebra gen-
erated by the evaluation mappings {πt}t≥0, i.e.,

σ(πt : t ≥ 0) = B(C[0,∞)) .

Fuermore, for any s ≥ 0, define ψs : C[0,∞) → C[0,∞) by letting (ψsϕ)(t) =

ω(t ∧ s), then
σ(πs : 0 ≤ t ≤ s) = ψ−1

s B(C[0,∞))

Proof. Firstly, we show that for any ϵ > 0 and ω ∈ C[0,∞)

{ω′ : d(ω′, ω) ≤ ϵ} ∈ σ(πt : t ≥ 0) , (4.2)

which implies B(C[0,∞)) ⊂ σ(πt : t ≥ 0). To this end, observe that ω′ →
pn(ω

′ − ω) is measurable with respect to σ(πt : t ≥ 0), since for any ϵ > 0,

{ω′ : pn(ω
′ − ω) ≤ ϵ} =

⋂
r∈[0,n]∩Q

{|πr − ωr| ≤ ϵ} .
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By the definition of the metric d,

d(ω, ω′) =

∞∑
n=1

1

2n
pn(ω − ω′)

1 + pn(ω − ω′)
.

Combine these two, then (4.2) follows. On the other hand, for each t, πt is
continuous function on C[0,∞). So for any open subset O of R, {πt ∈ O} is
open, and thus

{πt ∈ O} ∈ B(C[0,∞)) .

From this, we get
σ(πt : t ≥ 0) ⊂ B(C[0,∞)) .

We now complete the proof.

Next, we shall provide a characterization of tightness of the probability mea-
sures on C[0,∞). To do so, we define for each ω ∈ C[0,∞), T > 0, and δ > 0 the
modulus of continuity on [0, T ] by

mT (ω, δ) := max
|s−t|≤δ
0≤s,t≤T

|ω(s)− ω(t)| .

It’s eacy to show that mT (ω, δ) is non-decreasing in δ, and limδ↓0
mT (ω, δ) = 0

for each ω ∈ C[0,∞). Besides, mT (ω, δ) is continuous in ω ∈ C[0,∞) under the
metric d. In fact, by triangular inequality, for any ω, ω′ ∈ C[0,∞),

mT (ω, δ)−mT (ω′, δ) ≤ max
0≤s≤T

|ω(s)− ω′(s)|+ max
0≤t≤T

|ω(t)− ω′(t)|

≤ 2p⌈T⌉(ω − ω′) .
(4.3)

We shall need the following version of the Arzelà-Ascoli theorem.

Theorem 4.3 (Arzelà-Ascoli theorem). Let A ⊂ C[0,∞). Then A is relative
compact if and only if the following two conditions hold:

sup
ω∈A

|ω(0)| <∞ , (4.4)

lim
δ↓0

sup
ω∈A

mT (ω, δ) = 0 for every T > 0 . (4.5)
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Remark 4.1. In fact, these two conditions are equivalent to that, for any T > 0,
{ω|[0,T ] : ω ∈ A} is uniformly bounded and equicontinuous on [0, T ].

Proof. Assume that the closure of A, denoted by Ā, is compact. Since Ā is
contained in the union of the open sets

Gn = {ω : |ω(0)| < n}, n = 1, 2, . . .

it must be contained in some particular Gn, and (4.4) follows. Given T > 0 and
ϵ > 0, since A is totally bounded, there exists a finite ϵ-net Aϵ of A, that is Aϵ is
finite and

A ⊂
⋃

ω′∈Aϵ

B(ω′, ϵ) .

We choose δ(ϵ) > 0 so that

mT (ω′, δ) ≤ ϵ for all ω′ ∈ Aϵ, δ ≤ δ(ϵ) .

Then for any ω ∈ A, there exists ω′ ∈ Aϵ with d(ω, ω′) < ϵ. By (4.3) and (4.1),

mT (ω, δ) ≤ ϵ+ C(T )ϵ for all δ ≤ δ(ϵ)

where C(T ) is a positive constant depended only on T . Thus (4.5) holds.

We now assume(4.4), (4.5) and prove the compactness of Ā. Since C[0,∞)

is a metric space, it suffices to prove that every sequence {ωn}∞n=1 in A has a
convergent subsequence in C[0,∞).

Firstly, we will show that for any given t ≥ 0, πt(A) = {ω(t) : ω ∈ A} is a
bounded subset of R. To this end, fix T > t and note that for some δ1 > 0, we
have mT (ω, δ1) ≤ 1 for each ω ∈ A. So, let k = [ t

δ1
] and we have

|ω(t)− ω(0)| ≤
k∑

l=1

|ω (kδ1)− ω ((k − 1)δ)|+ |ω(t)− ω (kδ1)| ≤ k + 1 .

Secondly, it follows that for each r ∈ Q+, {ωn(r)} is bounded. Let {r1, r2, · · · }
be an enumeration of Q+. Then choose {ω(1)

n } a subsequence of {ωn} with
{ω(1)

n (r1)} converging to a limit denoted by ω (r1). From {ω(1)
n } choose a fur-

ther subsequence {ω(2)
n } such that ω(2)

n (r2) converges to a limit ω (r2). Continue
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this process, and then let {ω̃n} = {ω(n)
n } be the diagonal sequence. We have

ω̃n(r) → ω(r) for each r ∈ Q+.

Thirdly, let us note from (4.5) that for each T > 0 and ϵ > 0, there exists
δϵ > 0 such that |ω̃n(s)− ω̃n(t)| ≤ ϵ whenever 0 ≤ s, t ≤ T , |s − t| ≤ δϵ, and
n ≥ 1. The same inequality, therefore, holds for ω when we impose the additional
condition s, t ∈ Q+. It follows that ω is uniformly continuous on [0, T ]∩Q+, and so
has an extension to a continuous function, also denoted by ω, on [0, T ]. Moreover,
|ω(s)− ω(t)| ≤ ϵ whenever 0 ≤ s, t ≤ T and |s− t| ≤ δϵ. Now it suffices to show
that {ω̃n} converges to ω uniformly on [0, T ]. For the above ϵ, δϵ, there exists a
large integer K = Kϵ so that

[0, T ] ⊂
Kϵ⋃
j=1

B(rj , δϵ) .

Since ω̃n(r) → ω(r) for all r, we can find a large integer Nϵ so that for all n ≥ Nϵ,

|ω̃n(rj)− ω(rj)| ≤ ϵ , for all 1 ≤ j ≤ Kϵ .

Thus for any t ∈ [0, T ], there exists rj (1 ≤ j ≤ Kϵ) so that |t − rj | ≤ δϵ, and
hence

|ω̃n(t)− ω(t)| ≤ |ω̃n(t)− ω̃n(rj)|+ |ω̃n(rj)− ω(rj)|+ |ω(rj)− ω(t)| ≤ 3ϵ ,

for all n ≥ Nϵ. Then we get

max
0≤t≤T

|ω̃n(t)− ω(t)| ≤ 3ϵ, for all n ≥ Nϵ .

Since T is arbitary, thus ω is well-defined on [0,∞) and {ω̃n}∞n=1 converges
to ω in C[0,∞).

Theorem 4.4. Let {Pα}α∈Λ be a sequence of probability measures on C[0,∞).
Let π = {πt}t≥0 be the coordinate mappings (π is identity map). Then {Pα} is
tight if and only if

lim
x→∞

sup
α∈Λ

Pα(|π0| > x) = 0 , (4.6)

lim
δ↓0

sup
α∈Λ

Pα

(
mT (π, δ) > ϵ

)
= 0 , for all T > 0, ϵ > 0 . (4.7)
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Proof. Suppose first that {Pα} is tight. Given η > 0, there is a compact setK
with Pα(K) ≥ 1− η, for every α. According to Arzelà-Ascoli theorem, for suffi-
ciently large x > 0, we have |ω(0)| ≤ x for all ω ∈ K; this proves (4.6). According
to the same theorem, if T and ϵ are also given, then there exists δ0 such that
mT (ω, δ) ≤ ϵ for 0 < δ < δ0 and ω ∈ K. This gives us (4.7).

Let us now assume (4.6) and (4.6). Given a positive integer T and η > 0 we
choose x > 0 so that

sup
α∈Λ

Pα(|π0| > x) ≤ η

2T+1
.

We choose δk > 0, k = 1, 2, . . . such that

sup
α∈Λ

Pα

(
mT (π, δk) >

1

k

)
≤ η

2T+k+1
.

Define

AT =

{
ω : |ω(0)| ≤ x,mT (ω, δk) ≤

1

k
, for all k ≥ 1

}
, A =

∞⋂
T=1

AT .

So

Pα (AT ) ≥ 1−
∞∑
k=0

η

2T+k+1
= 1− η

2T
, Pα(A) ≥ 1− η,

for every α ∈ Λ. By Arzelà-Ascoli theorem, A is compact, so {Pα} is tight.

Exercise 4.1. Let {Pn}n≥1 be a sequence of probability measures on C[0,∞)

which converges weakly to a probability measure P. Suppose, in addition, that
{fn}n≥1 is a uniformly bounded sequence of real-valued, continuous functions on
C[0,∞) converging to a continuous function f, the convergence being uniform on
compact subsets of C[0,∞). Then

lim
n→∞

∫
C[0,∞)

fn(ω)Pn(dω) =
∫
C[0,∞)

f(ω)P(dω) .

Remark 4.2. Theorem 4.3, 4.4 and Exercise 4.1 have natural extensions to C[0,∞)d =

C([0,∞),Rd), the space of continuous Rd-valued functions on [0,∞). The proofs
of these extensions are the same as for the one-dimensional case.
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B Convergence of finite-fimensional distributions

Suppose thatX is a continuous process on some (Ω,F ,P). For each ω the function
t 7→ Xt(ω) is a member of C[0,∞), which we denote by X(ω). Since B(C[0,∞))

is generated by the one-dimensional cylinder sets and Xt(·) is F-measurable for
each fixed t, the random function X : Ω → C[0,∞) is F/B(C[0,∞)) -measurable.
Thus, if {X(n)}n≥1 is a sequence of continuous processes (with each X(n) de-
fined on a perhaps distinct probability space (Ωn,Fn, Pn)) , we can ask whether
X(n) law−−→ X. We can also ask whether the finite-dimensional distributions of
{X(n)}n≥1 converge to those of X, i.e., whether(

X
(n)
t1 , X

(n)
t2 , . . . , X

(n)
td

)
law−−→ (Xt1 , Xt2 , . . . , Xtd)

The latter question is considerably easier to answer than the former, since the
convergence in distribution of finite-dimensional random vectors can be resolved
by studying characteristic functions.

For any finite subset {t1, . . . , td} of [0,∞), let us define the projection mapping
πt1,...,td : C[0,∞) → Rd as

πt1,...,td(ω) = (ω (t1) , . . . , ω (td)) .

If the function f : Rd → R is bounded and continuous, then the composite
mapping f ◦πt1,...,td : C[0,∞) → R enjoys the same properties; thus, X(n) law−−→ X

implies

lim
n→∞

Enf
(
X

(n)
t1 , . . . , X

(n)
td

)
= lim

n→∞
En (f ◦ πt1,...,td)

(
X(n)

)
= E (f ◦ πt1,...,td) (X) = Ef (Xt1 , . . . , Xtd) .

In other words, if the sequence of processes
{
X(n)

}
n≥1

converges in distribution
to the process X, then all finite-dimensional distributions converge as well. The
converse holds in the presence of tightness (Theorem 4.5), but not in general;
this failure is illustrated by the following example.

Example 4.1. Consider the sequence of (nonrandom) processes

X
(n)
t = nt · 1[0, 1

2n ](t) + (1− nt) · 1( 1
2n , 1

n ](t) t ≥ 0 ,
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and let Xt = 0, t ≥ 0. Then, all finite-dimensional distributions of X(n) converge
weakly to the corresponding finite-dimensional distributions of X, but the se-
quence of processes {X(n)}n≥1 does not converge in distribution to the process
X, since

max
0≤t≤1

X
(n)
t ≡ 1/2 > 0 = max

0≤t≤1
Xt.

Theorem 4.5. Let {X(n)}n≥1 be a tight sequence of continuous processes with
the property that, whenever 0 ≤ t1 < · · · < td < ∞, then the sequence of ran-
dom vectors{(X(n)

t1 , · · · , X(n)
td

)} converges in distribution. Let Pn be the measure
induced on (C[0,∞),B(C[0,∞))) by X(n). Then {Pn}∞n=1 converges weakly to a
measure P, under which the coordinate mapping process πt(ω) := ω(t) on C[0,∞)

satisfies(
X

(n)
t1 , . . . , X

(n)
td

)
law−−→ (πt1 , . . . , πtd) , 0 ≤ t1 < · · · < td <∞, d ≥ 1 .

Proof. In order that {Pn} converges weakly, since we have known {Pn} is tight,
it suffices to show that each weakly convergent subsequence of {Pn} has the same
limit. In other words, let {Pln}, {Pkn

} be two weakly convergent subsequence
with limit P̃, P̂ respectively, then P̃ = P̂. This is trivial since the finite-dimensional
distributions of P̃, P̂ coincide: For f ∈ Cb(Rd) and 0 ≤ t1 < · · · < td <∞,

Ẽf(πt1 , · · · , πtd) =
∫
f ◦ πt1,...,td dP̃ = lim

n→∞

∫
f ◦ πt1,...,td dPln

= lim
n→∞

∫
f d(Pln ◦ π−1

t1,...,td
) = lim

n→∞

∫
f d(Pkn ◦ π−1

t1,...,td
)

= lim
n→∞

∫
f ◦ πt1,...,td dPkn

=

∫
f ◦ πt1,...,td dP̂

= Êf(πt1 , · · · , πtd) .

We now complete the proof.

We shall need the following result.

Exercise 4.2. Let {X(n)}, {Y (n)}, and X be random variables with values in a
Polish space (E,B(E)). Assume that for each n ≥ 1, X(n) and Y (n) are defined on
the same probability space. If X(n) law−−→ X and ρ

(
X(n), Y (n)

)
→ 0 in probability.

Then Y (n) law−−→ X.
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C The invariance principle

Let us consider now a sequence {ξj}j≥1 of independent, identically distributed
random variables with mean zero and positive variance σ2, as well as the sequence
of partial sums S0 = 0, Sn =

∑n
j=1 ξj , n ≥ 1. A continuous-time process Y =

{Yt}t≥0 can be obtained from the sequence {Sn}n≥0 by linear interpolation:

Yt := S[t] + (t− [t])ξ[t]+1, t ≥ 0 . (4.8)

66 2. Brownian Motion

PEw E CEO, (0); (W(tl)"'" W(td))E A] = Q[WE CEO, (0); (w(td, ... , w(td)) E A],

0~tl<t2< .. ·<td<00, AE8I(~d), d;;:::1.

This means P = Q.
Suppose the sequence of measures {Pn}~=l induced by {x(n)}~=l did not

converge weakly to P. Then there must be a bounded, continuous function
f: CEO, (0) -+ ~ such that limn_ oo Jf(w)Pn(dw) does not exist, or else this limit
exists but is different from Jf(w)P(dw). In either case, we can choose a
subsequence {Pn}~=l for which limn_oo Jf(w)Pn(dw) exists but is different from
Jf(w)P(dw). This subsequence can have no further subsequence {Pn}~=l with
Pn ~ P, and this violates the conclusion of the previous paragraph. 0

We shall need the following result.

4.16 Problem. Let {x(n)}~=l' {y(n)}~=l' and X be random variables with
values in a separable metric space (S, p); we assume that for each n;;::: 1,
x(n) and y(n) are defined on the same probability space. If x(n) ~ X and
p(x(n), yIn») -+ 0 in probability, as n -+ 00, then y(n) ~ X as n -+ 00.

D. The Invariance Principle and the Wiener Measure

Let us consider now a sequence {~j }~l of independent, identically distributed
random variables with mean zero and variance (J2, 0 < (J2 < 00, as well as
the sequence of partial sums So = 0, Sk = L~=l ~j' k;;::: 1. A continuous-time
process y = {Y,; t ;;::: O} can be obtained from the sequence {Sd1:'=0 by linear
interpolation; i.e.,

t ;;::: O.(4.10)

(4.9) Y, = S[/] + (t - [t])~[/]+1' t;;::: 0,

where [t] denotes the greatest integer less than or equal to t. Scaling appro­
priately both time and space, we obtain from Ya sequence of processes {x(n)}:

(n) _ 1
X, - ;: Y../,

(Jy n

y

t

Scaling appropriately both time and space, we obtain from Y a sequence of
processes

{
X(n)

}
:

X
(n)
t =

1

σ
√
n
Ynt, t ≥ 0 (4.9)

Note that with s = k
n and t = k+1

n , the increment X(n)
t − X

(n)
s = 1

σ
√
n
ξk+1 is

independent of FX(n)

s = σ (ξ1, · · · , ξk) . Furthermore, X(n)
t −X

(n)
s has zero mean

and variance t−s. This suggests that {X(n)} is approximately a Brownian motion.
We now show that, even though the random variables ξj are not necessarily
normal, the central limit theorem dictates that the limiting distributions of the
increments of X(n) are normal.

Theorem 4.6. With {X(n)} defined by (4.9) and 0 ≤ t1 < · · · < td < ∞, we
have (

X
(n)
t1 , . . . , X

(n)
td

)
law−−→ (Bt1 , . . . , Btd) as n→ ∞ ,

where {Bt, }t≥0 is a standard, one-dimensional Brownian motion.
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Proof. We take the case d = 2; the other cases differ from this one only by being
notationally more cumbersome. Set s = t1, t = t2. We wish to show(

X(n)
s , X

(n)
t

)
law−−→ (Bs, Bt) .

Since ∣∣∣∣X(n)
t − 1

σ
√
n
S[tn]

∣∣∣∣ ≤ 1

σ
√
n

∣∣ξ[tn]+1

∣∣ ,
we have by the Chebyshev inequality,

P
(∣∣∣∣X(n)

t − 1

σ
√
n
S[tn]

∣∣∣∣ > ϵ

)
≤ 1

ϵ2n
→ 0 .

It is clear then that∥∥∥∥(X(n)
s , X

(n)
t

)
− 1

σ
√
n

(
S[sn], S[tn]

)∥∥∥∥→ 0 in probability

so, by Problem 4.16, it suffices to show

1

σ
√
n

(
S[sn], S[tn]

) law−−→ (Bs, Bt)

From continuity mapping theorem, we see that this is equivalent to proving

1

σ
√
n

[sn]∑
j=1

ξj ,

[tn]∑
j=[sn]+1

ξj

 law−−→ (Bs, Bt −Bs)

We shall use characteristic function to show this. The independence of the ran-
dom variables {ξj} implies

E

exp

 iu

σ
√
n

[sn]∑
j=1

ξj +
iv

σ
√
n

[tn]∑
j=[sn]+1

ξj




= E

exp

 iu

σ
√
n

[sn]∑
j=1

ξj


 · E

exp

 iv

σ
√
n

[tn]∑
j=[sn]+1

ξj


 .

(4.10)

By the central limit theorem,

1

σ
√
n

[sn]∑
j=1

ξj
law−−→ N(0, s) .
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We have

lim
n→∞

E

exp

 iu

σ
√
n

[sn]∑
j=1

ξj


 = e−u2 s

2 .

Similarly,

lim
n→∞

E

exp

 iv

σ
√
n

[tn]∑
j=[sn]+1

ξj


 = e−v2 t−s

2 .

Substitution of these last two equations into (4.10) completes the proof.

Actually, the sequence
{
X(n)

}
of linearly interpolated and normalized random

walks in (4.9) converges to Brownian motion in distribution. For the tightness
required to carry out such an extension (recall Theorem 4.5), we shall need two
auxiliary results.

We are now in a position to establish the main result of this section, namely
the convergence in distribution of the sequence of normalized random walks in
(4.9) to Brownian motion. This result is also known as the invariance principle.

Theorem 4.7 (Donsker’s Invariance Principle). Let (Ω,F ,P) be a probability
space on which is given a sequence {ξj}j≥1 of independent, identically distributed
random variables with mean zero and positive variance σ2. Define X(n) by (4.9)
and let Pn be the measure induced by X(n) on (C[0,∞),B(C[0,∞))). Then {Pn}
converges weakly to a measure P∗ under which the coordinate mapping process
Wt(ω) := ω(t) on C[0,∞) is a standard, one-dimensional Brownian motion.

Proof. In light of Theorem 4.5 and 4.6, it remains to show that
{
X(n)

}∞
n=1

is
tight. For this we use Theorem 4.4, and since X(n)

0 = 0 a.s. for every n, we need
only establish, for arbitrary ϵ > 0 and T > 0, the convergence

lim
δ↓0

sup
n≥1

P

(
max

|s−t|≤δ
0≤s,t≤T

∣∣∣X(n)
s −X

(n)
t

∣∣∣ > ϵ

)
= 0 . (4.11)

We may replace “supn≥1” in this expression by “lim supn→∞”, since for a finite
number of integers n we can make the probability appearing in (4.11) as small
as we choose, by reducing δ. But

P

(
max

|s−t|≤δ
0≤s,t≤T

∣∣∣X(n)
s −X

(n)
t

∣∣∣ > ϵ

)
= P

(
max

|s−t|≤nδ
0≤s,t≤nT

|Ys − Yt| > ϵσ
√
n

)
,
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and
max

|s−t|≤nδ
0≤s,t≤nT

|Ys − Yt| ≤ max
|s−t|≤⌈δ⌉

0≤s,t≤⌈nT⌉

|Ys − Yt| ≤ max
0≤k≤⌈nT⌉
1≤j≤⌈nδ⌉

|Sk+j − Sk| ,

where the last inequality follows from the fact that Y is piecewise linear and
changes slope only at integer values. Now (4.11) follows from Lemma 4.8.

Remark 4.3. A standard, one-dimensional Brownian motion defined on any prob-
ability space can be thought of as a random variable with values in C[0,∞);

regarded this way, it induces the Wiener measure on (C[0,∞),B(C[0,∞))). For
this reason, we call (C[0,∞),B(C[0,∞)),P∗) where P∗ is Wiener measure, the
canonical probability space for Brownian motion.

Lemma 4.8. For any T > 0 and ϵ > 0,

lim
δ↓0

lim sup
n→∞

P

(
max

0≤k≤⌈nT⌉
1≤j≤⌈nδ⌉

|Sk+j − Sk| > ϵσ
√
n

)
= 0 .

Proof. For 0 < δ ≤ T , let m = mδ ≥ 2 be the unique integer satisfying m− 1 ≤
T
δ < m. Since ⌈nT⌉

⌈nδ⌉ → T
δ < m, we have dnT e < mdnδe for sufficiently large n.

Step 1. Let n be sufficiently large. We shall show that{
max

0≤k≤⌈nT⌉
1≤j≤⌈nδ⌉

|Sk+j − Sk| > ϵσ
√
n

}

⊂
m⋃

p=0

{
max

1≤j≤⌈nδ⌉

∣∣Sj+p⌈nδ⌉ − Sp⌈nδ⌉
∣∣ > 1

3
ϵσ

√
n

}
.

(4.12)

Suppose |Sj+k − Sk| > ϵσ
√
n for some k in {0, 1, · · · , dnT e} and j in {1, · · · dnδe}.

There exists then a unique integer p, 0 ≤ p ≤ m− 1, such that

pdnδe ≤ k < (p+ 1)dnδe .

There are two possibilities for k + j:

• One possibility is that pdnδe < k + j ≤ (p + 1)dnδe, in which case either∣∣Sk − Sp⌈nδ⌉
∣∣ > 1

3ϵσ
√
n, or else

∣∣Sk+j − Sp⌈nδ⌉
∣∣ > 1

3ϵσ
√
n.
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• The second possibility is that (p+ 1)dnδe < k + j < (p+ 2)dnδe, in which
case either

∣∣Sk − Sp⌈nδ⌉
∣∣ > 1

3ϵσ
√
n,
∣∣S(p+1)p⌈nδ⌉ − Sp⌈nδ⌉

∣∣ > 1
3ϵσ

√
n, or else∣∣Sk+j − S(p+1)⌈nδ⌉

∣∣ > 1
3ϵσ

√
n.

In conclusion, we see (4.12) holds.

Step 2. Observe that for all p,

P
(

max
1≤j≤⌈nδ⌉

∣∣Sj+p⌈nδ⌉ − Sp⌈nδ⌉
∣∣ > 1

3
ϵσ

√
n

)
= P

(
max

1≤j≤⌈nδ⌉
|Sj | >

1

3
ϵσ

√
n

)
,

By step 1, we have

P

(
max

0≤k≤⌈nT⌉
1≤j≤⌈nδ⌉

|Sk+j − Sk| > ϵσ
√
n

)
≤ (m+ 1)P

(
max

1≤j≤⌈nδ⌉
|Sj | >

1

3
ϵσ

√
n

)
.

≤ 2T

δ
P
(

max
1≤j≤⌈nδ⌉

|Sj | >
1

3
ϵσ

√
n

)
.

So it suffices to show

lim
δ↓0

lim sup
n→∞

1

δ
P
(

max
1≤j≤⌈nδ⌉

|Sj | > ϵσ
√
n

)
= 0 . (4.13)

Step 3. We now define

τ = inf
{
j ≥ 0; |Sj | > εσ

√
n
}
.

With 0 < δ < ε2

2 , we have (imitating the proof of the Kolmogorov inequality e.g.,
Chung (1974), p. 116)

P
(

max
0≤j≤⌈nδ⌉

|Sj | > εσ
√
n

)
≤ P

(∣∣S⌈nδ⌉
∣∣ ≥ σ

√
n(ε−

√
2δ)
)

+

[nδ]∑
j=1

P
(∣∣S⌈nδ⌉

∣∣ < σ
√
n(ε−

√
2δ)

∣∣∣∣τ = j

)
P(τ = j)

(4.14)
But if τ = j, then

∣∣S⌈nδ⌉
∣∣ < σ

√
n(ε −

√
2δ) implies

∣∣S⌈nδ⌉ − Sj

∣∣ > σ
√
2nδ. By

the Chebyshev inequality, the probability of this event is bounded above by

1

2nδσ2
E
[(
S⌈nδ⌉ − Sj

)2 |τ = j
]
=

1

2nδσ2
E

 ⌈nδ⌉∑
i=j+1

ξ2i

 ≤ 1

2
.
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Returning to (4.14), we may now write

P
(

max
0≤j≤⌈nδ⌉

|Sj | > εσ
√
n

)
≤P
(∣∣S⌈nδ⌉

∣∣ ≥ σ
√
n(ε−

√
2δ)
)
+

1

2
P(τ ≤ [nδ])

≤P
(∣∣S⌈nδ⌉

∣∣ ≥ σ
√
n(ε−

√
2δ)
)
+

1

2
P
(

max
0≤j≤⌈nδ⌉

|Sj | > εσ
√
n

)
.

So, it follows that

P
(

max
0≤j≤⌈nδ⌉

|Sj | > εσ
√
n

)
≤ 2P

(∣∣S⌈nδ⌉
∣∣ ≥ σ

√
n(ε−

√
2δ)
)
.

Since
S⌈nδ⌉

σ
√
nδ

law−−→ N(0, 1) ,

we have
lim
δ↓0

lim sup
n→∞

1

δ
P
(

max
1≤j≤⌈nδ⌉

|Sj | > ϵσ
√
n

)
≤ lim

δ↓0

2

δ
lim sup
n→∞

P

(
|S⌈nδ⌉|
σ
√
nδ

≥ ε−
√
2δ√
δ

)

= lim
δ↓0

2

δ
P

(
|N(0, 1)| ≥ ε−

√
2δ√
δ

)

≤ lim
δ↓0

2
√
δ

(ε−
√
2δ)3

E|N(0, 1)|3 .

Now we complete the proof.

4.2 Skorokhod embedding

We will give a motivation about the Skorokhod embedding. Let {Sn}n≥0 be a
simple random walk on the line, starting at the origin. For positive integer n, let
Xn = Sn − Sn−1 be the n-step of the walk, as we konw, {Xn} is i.i.d. with the
distribution

P(X1 = 1) = P(X1 = −1) = 1/2 .
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Let {B(t)}t≥0 be a standard Brownian motion. We will find a sequence of stop-
ping times {τn} of {B(t)} so that Let τ1 := inf{t ≥ 0 : |Bt| = 1}. As we showed
in Theorem 3.44, 3.46, Eτ1 = 1, and

P(Bτ1 = 1) = P(Bτ1 = −1) = 1/2 .

Next, we define

τ2 := inf{t ≥ τ1 : |B(t)−B(τ1)| = 1}

= inf{t ≥ 0 : |B(t+ τ1)−B(τ1)| = 1}+ τ1 ,

is a stopping times for Brownian motion. It follows from the strong Markov prop-
erty that, {B(t+τ1)−B(τ1)}t≥0 is a standard Brownian motion and independent
of FB

τ1 . So
Bτ2 −Bτ1 , Bτ1

are independent and identically distributed random variables.

We define stopping times τn of the Brownian motion by induction. Let

τn := inf{t ≥ τ1 : |B(t)−B(τn−1)| = 1}

= inf{t ≥ 0 : |B(t+ τn−1)−B(τn−1)| = 1}+ τn−1 ,

where we set τ0 = 0. By Strong Markov property,

Bτn −Bτn−1 , · · · , Bτ1 −Bτ0

are independent and identically distributed random variables. Therefore, {Bτn}
is simple random walk, i.e.,

L[{Sn}] = L[{Bτn}] .

For random walks {Sn}n≥0 with general increments, we use a random variable
X to represent the distribution of the increment. So, if we want to embed the
random walk {Sn}n≥0 in Brownian motion, it’s neceaasry to ask that if we can
embed a random variable X in Brownian motion. In other words, for a given
random variable X representing the increment, does there exist a stopping time
τ of Brownian motion with Eτ < ∞, such that Bτ has the law of X. This
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Figure 4.1: Embedding simple random walk in Brownian motion.

problem is called the Skorokhod embedding problem(SEP). By Wald’s lemmas,
for any integrable stopping time τ, we have

EBτ = 0 and EB2
τ = Eτ <∞ ,

so that the Skorokhod embedding problem can only be solved for random vari-
ables X with mean zero and finite second moment. However, these are the only
restrictions, as the following result shows.

Theorem 4.9 (Skorokhod Embedding Theorem). Let X be a real valued random
variable with EX = 0 and EX2 < ∞, then there exists a stopping time τ , of the
natural filtration {FB

t }t≥0 of the Brownian motion, such that Bτ has the same
law as X and Eτ = EX2.

Example 4.2. Assume that X may take two values a < b. In order that EX = 0,
we must have a < 0 < b and P(X = a) = b/(b− a) and P (X = b) = −a/(b− a).
We have seen in As we showed in Theorem 3.44, 3.46 that, for the stopping time
τ = inf{t : B(t) /∈ (a, b)} the random variable BT has the same distribution as
X, and that Eτ = −ab is finite.

We now present two proofs of the Skorokhod embedding theorem, which ac-
tually represent different constructions of the required stopping times. Both ap-
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proaches, Dubins’embedding, and the Azéma–Yor embedding are very elegant
and have their own merits.

A Solution by Dubins

The first one, due to Dubins, is particularly simple and based on the notion
of binary splitting martingales. We say that a martingale {Xn}n≥0 is binary
splitting if, whenever for some x0, . . . , xn ∈ R the event

{X0 = x0, X1 = x1, . . . , Xn = xn}

has positive probability, the distribution of Xn+1 conditioned on this event,

L[Xn+1|X0 = x0, . . . , Xn = xn] ,

is supported on at most two values.

Lemma 4.10. Let X be a random variable with EX2 < ∞. Then there is a
binary splitting martingale {Xn}n≥0 such that Xn → X a.s. and in L2.

Proof. We define the martingale {Xn}n≥0 and the associated filtration {Gn}n≥0

recursively. Let

G0 := {∅,Ω} , X0 := EX , ξ0 =

{
1 if X ≥ X0

−1 if X < X0

.

For any n ≥ 1, let

Gn = σ (ξ0, · · · , ξn−1) , Xn = E (X|Gn) , ξn =

{
1 if X ≥ Xn

−1 if X < Xn

.

Note that Gn is generated by a partition Pn of the underlying probability space
into 2n sets, each of which has the form

{X0 = x0, X1 = x1, . . . , Xn = xn} .

As each element of Pn is a union of two elements of Pn+1, the martingale {Xn}n≥0

is binary splitting. By Theorem 1.35 (iii), we get

Xn → X∞ := E [X|G∞] a.s. and in L2 .
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1

Figure 4.2: The ditribution of X0, X1, X2.

where G∞ = σ (∪iGi) . To conclude the proof we have to show that X = X∞

almost surely. We claim that, almost surely,

lim
n↑∞

ξn (X −Xn+1) = |X −X∞| (4.15)

Indeed, if X(ω) = X∞(ω) this is easy. If X(ω) < X∞(ω) then for some large
enough N we have X(ω) < Xn(ω) for any n > N, hence ξn = −1 and (4.15)
holds. Similarly, if X(ω) > X∞(ω) then ξn = 1 for n > N and so (4.15) holds.
Using that ξn is Gn+1 -measurable, we find that

E [ξn (X −Xn+1)] = E [ξnE (X −Xn+1|Gn+1)] = 0

Hence, we conclude that E |X −X∞| = 0.

Proof of Theorem 4.9. From Lemma 4.10, we take the binary splitting martingale
{Xn}n≥0 such that Xn → X almost surely and in L2. Define τ0 = 0, and

τ1 = inf{t ≥ 0 : Bt ∈ suppL(X1)} ,

where suppL(X1) is the support of the distribution of X1. Then, clearly, Bτn has
the same distribution of X1. Let

τn = inf{t ≥ τn−1 : Bt ∈ suppL(Xn)} ,
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It’s not hard o check that τn ∈ L1, Btaun
has the same distribution of Xn and

Eτn = EX2
n. As τn is an increasing sequence, we have τn ↑ τ almost surely for

some stopping time τ. Also, by the monotone convergence theorem

Eτ = lim
n↑∞

Eτn = lim
n↑∞

EX2
n = EX2 .

As Bτn converges in distribution to X by construction, and converges almost
surely to Bτ by continuity of the Brownian sample paths, we get that Bτ is
distributed as X.

B Solution by Azéma and Yor

In this subsection we discuss a second solution to the Skorokhod embedding
problem with a more explicit construction of the stopping times.

Theorem 4.11. Suppose that X is a real valued random variable with EX = 0

and EX2 <∞. Let

Ψ(x) =

{
E(X|X ≥ x), if P(X ≥ x) > 0

0, otherwise
.

For a Brownian motion {Bt}t≥0 let {Mt}t≥0 be the maximum process and define
a stopping time τ by

τ = inf{t ≥ 0 :Mt ≥ Ψ(Bt)} .

Then Eτ = EX2 and Bτ has the same law as X.

Remark 4.4. It’s easy to see that Ψ is increasing and Ψ(x) > x on (−∞, x0),
where x0 := sup{x : P(X ≥ x) > 0}. In fact, for x1 < x2, with P(X > x2) > 0,
we have

E(X|X ≥ x1) ≤ E(X|X ≥ x2)

⇔ P(X ≥ x2)E[X1{X≥x1}] ≤ P(X ≥ x1)E[X1{X≥x2}]

⇔ P(X ≥ x2)E[X1{x1≤X<x2}] ≤ P(x1 ≤ X < x2)E[X1{X≥x2}] .

The last inequality is obvious. Moreover, τ is a stopping time of Brown motion
since ψ is left-continuous.
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130 Brownian motion and random walk
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Fig. 5.4. The Azéma–Yor embedding: the path is stopped when the Brownian motion hits the
level Ψ−1 (M (t)), where Ψ−1 (x) = sup{b : Ψ(b) � x}.

We proceed in three steps. In the first step we formulate an embedding for random variables
taking only finitely many values.

Lemma 5.20 Suppose the random variable X with EX = 0 takes only finitely many values

x1 < x2 < · · · < xn .

Define y1 < y2 < · · · < yn−1 by yi = Ψ(xi+1), and define stopping times T0 = 0 and

Ti = inf
{
t � Ti−1 : B(t) �∈ (xi, yi)

}
for i � n − 1.

Then T = Tn−1 satisfies E[T ] = E[X2 ] and B(T ) has the same law as X .
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Fig. 5.5. The Azéma–Yor embedding for the uniform distribution on the set {−2,−1, 0, 1, 2}. The
drawn path samples the value B(T ) = 0 with T = T4 .

Figure 4.3: The Azéma-Yor embedding: the path is stopped when the Brownian
motion hits the level Ψ−1(Mt), where Ψ−1(x) = sup{a : Ψ(a) ≤ x}

Remark 4.5. Clearly, τ is a stopping time of the natural filtration. In fact, we
have

{τ ≤ t} =
⋂
n∈N

⋃
r∈[0,t]∩Q

{
Mr ≥ Ψ(Br)−

1

2n

}
∈ FB

t .

Besides, τ < ∞ almost surely is trivial. In fact, if P(X = 0) = 1, then τ = 0..
Otherwise, take any x < 0 < y = Ψ(x), and let τx be the first visit to x following
the first visit to y. Then τ ≤ τx <∞ a.s.

We proceed in three steps. In the first step we formulate an embedding for
random variables taking only finitely many values.

Lemma 4.12. Suppose the random variable X with mean zero takes only finitely
many values {x1 < x2 < · · · < xn}. Define y1 < y2 < · · · < yn−1 by yi =

Ψ(xi+1) , and define stopping times τ0 = 0,

τi = inf {t ≥ τi−1 : B(t) /∈ (xi, yi)} for i ≤ n− 1 .

Then τn−1 satisfies Eτn−1 = EX2 and Bτn−1
has the same law as X.
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We proceed in three steps. In the first step we formulate an embedding for random variables
taking only finitely many values.

Lemma 5.20 Suppose the random variable X with EX = 0 takes only finitely many values

x1 < x2 < · · · < xn .

Define y1 < y2 < · · · < yn−1 by yi = Ψ(xi+1), and define stopping times T0 = 0 and

Ti = inf
{
t � Ti−1 : B(t) �∈ (xi, yi)

}
for i � n − 1.

Then T = Tn−1 satisfies E[T ] = E[X2 ] and B(T ) has the same law as X .
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drawn path samples the value B(T ) = 0 with T = T4 .Figure 4.4: The Azéma-Yor embedding for the uniform distribution on the set
{−2,−1, 0, 1, 2}. The drawn path samples the value Bτ = 0 with τ = τ4

Proof. First observe that yi ≥ xi+1 and this equality holds if and only if i = n−1.

We have Eτn−1 < ∞, and hence E τn−1 = EB2
τn−1

. So it suffices to show that
Bτn−1

has the same distribution as X. To this end, we will show a stronger result.
For 1 ≤ k ≤ n1, define random variables

Yk =

{
yk , if X ≥ xk+1

xj , if X = xj ≤ xk
.

Clearly Yn−1 = X. We now argue that

L
(
Bτ1 , . . . , Bτn−1

)
= L (Y1, . . . , Yn−1) .

Note that Y1 and Bτ1 has expectation zero and takes on the two values x1, y1. For
k ≥ 2, given Yk−1 = yk−1 (Bτk−1

= yk−1), the random variable Yk (Bτk) takes
the values xk, yk and has expectation yk−1. Given Yk−1 = xj (Bτk−1

= xj),
j ≤ k− 1, we have Yk = xk (Bτk = xj). Hence the two tuples have the same law
and, in particular, Bτn−1

has the same law as X.

Lemma 4.13. The stopping time τn−1 constructed in Lemma 4.12 and the stop-
ping time τ in Theorem 4.11 are equal.
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Proof. Firstly, we will show that τ ≤ τn−1. To this end, it’s enough to show that
Mτn−1 ≥ Ψ(Bτn−1). Suppose that Bτn−1 = xk, then Ψ

(
Bτn−1

)
= yk−1.

(i) If k ≤ n− 1, then Bτk−1
= yk−1 = Ψ(xk), and hence Mτk ≥ yk−1.

(ii) If k = n, we also have Mτn−1
= xn = yn−1.

So in any case, we have τ ≤ τn−1.

Secondly, we shall show that τn−1 ≤ τ . To see this, suppose that Bτn−1 = xk.
For j ≤ k, and τj−1 ≤ t < τj , we have Bt ∈ (xj , yj) and this implies Mt < yj ≤
Ψ(Bt). Hence τn−1 ≤ τ .

Finally, we have seen τn−1 = τ .

Now we completes the proof of Theorem 4.11 for random variables taking
finitely many values. The general case follows from a limiting procedure.

Lemma 4.14. Given a centred random variable X with finite variance. There
exist centred random variables Xn taking only finitely many values, such that Xn

converges to X in law and for Ψn(x) = E (Xn|Xn ≥ x) , the embedding stopping
times

τn = inf {t ≥ 0 :Mt ≥ Ψn(Bt)}

converge a.s. to τ. Infer that Bτ has the same law as X, and Eτ = EX2.

Proof. For each n ∈ N, divide the intersection of the support of X with the
interval [−n, n] into finitely intervals with mesh 1/n. If x1 < · · · < xm are the
partition points, construct the law ofXn by placing, for any j ∈ {0, . . . ,m}, atoms
of size P (X ∈ [xj , xj+1)) in position E (X|xj ≤ X < xj+1) , using the convention
x0 = −∞ and xm+1 = ∞. By construction, Xn takes only finitely many values.
Evidently, EXn = 0 and Xn converges to X in distribution.

Then, one can show that τn → τ almost surely. (How?) This implies that
Bτn → Bτ a.s., and therefore also in distribution, which implies that X has the
same law as Bτ . Fatou’s lemma implies that

Eτ ≤ lim inf
n→∞

Eτn = lim inf
n→∞

EX2
n <∞ .

Hence, by Wald’s second lemma, EX2 = EB2
τ = Eτ .
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From Theorem 8.1.1, it is only a small step to:

Theorem 4.15. Let X1, X2, . . . be i.i.d. with a distribution F which has mean 0

and variance 1, and let Sn = X1+ · · ·+Xn. There is a sequence of stopping times
τ0 = 0, τ1, τ2, . . . such that L[{Sn}] = L[{Bτn}] and τn − τn−1 are independent
and identically distributed.

Proof. Let τ0 = 0, and define

τn = inf{t ≥ τn−1 : max
τn−1≤s≤t

Bt −Bτn−1 ≥ Ψ(Bt −Bτn−1)} .

By strong Markov property, it’s easy
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Appendix A

Convergence of Measures

One focus of probability theory is distributions that are the result of an inter-
play of a large number of random impacts. Often a useful approximation can be
obtained by taking a limit of such distributions, for example, a limit where the
number of impacts goes to infinity. With the Poisson distribution, we have en-
countered such a limit distribution that occurs as the number of very rare events
when the number of possibilities goes to infinity. In many cases, it is necessary to
rescale the original distributions in order to capture the behavior of the essential
fluctuations, e.g., in the central limit theorem. While these theorems work with
real random variables, we will also see limit theorems where the random variables
take values in more general spaces such as the space of continuous functions when
we model the path of the random motion of a particle.

In this chapter, we provide the abstract framework for the investigation of
convergence of measures. We introduce the notion of weak convergence of prob-
ability measures on general (mostly Polish) spaces and derive the fundamental
properties. We start with a short overview of some topological definitions and
theorems.
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A.1 A Topology Primer
In the following, let (E, τ) be a Hausdorff topological space with the Borel σ-
algebra B(E). A measure defined on B(E) is called a Borel measure. For A ⊂ E,
we denote by Ā the closure of A, by A◦ the interior and by ∂A the boundary of
A.

(E, τ) is called metrizable if there exists a metric d on E such that τ is induced
by the open balls Bε(x) := {y ∈ E : d(x, y) < ε}. A metric d on E is called
complete if any Cauchy sequence with respect to d converges in E. (E, τ) is
called completely metrizable if there exists a complete metric on E that induces
τ. If (E, d) is a metric space and A,B ⊂ E, then we write d(A,B) = inf{d(x, y) :
x ∈ A, y ∈ B} and d(x,B) := d({x}, B) for x ∈ E.

A metrizable space (E, τ) is called separable if there exists a countable dense
subset of E. Separability in metrizable spaces is equivalent to the existence of a
countable base of the topology; that is, a countable set U ⊂ τ with

A =
⋃

U∈U :U⊂A

U for all A ∈ τ.

(For example, choose the ε-balls centered at the points of a countable subset and
let ε run through the positive rational numbers.) A compact metric space is al-
ways separable (simply choose for each n ∈ N a finite cover Un ⊂ τ comprising balls of radius 1

n and then take U :=
⋃

n∈N Un

)
Definition A.1. A topological space (E, τ) is called a Polish space if it is
separable and if there exists a complete metric that induces the topology τ .

Examples of Polish spaces are countable discrete spaces (however, not Q with
the usual topology), the Euclidean spaces Rn, and the space C([0, 1]) of continu-
ous functions [0, 1] → R, equipped with the supremum norm ‖ · ‖∞. In practice,
all spaces that are of importance in probability theory are Polish spaces, and
hence we will always suppose that E is a Polish space.

Definition A.2. A σ-finite measure µ on (E,B(E)) is called

(i) locally finite if, for any point x ∈ E, there exists an open neighborhood
U of x such that µ(U) <∞ ;
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(ii) inner regular if

µ(A) = sup{µ(K) : K ⊂ A is compact} for all A ∈ B(E) ;

(iii) outer regular if

µ(A) = inf{µ(U) : U ⊃ A is open} for all A ∈ B(E)

(iv) regular if µ is inner and outer regular, and

(v) a Radon measure if µ is an locally finite inner regular measure.

Remark A.1. The Lebesgue measure λ on Rd is a regular Radon measure. How-
ever, not all σ-finite measures on Rd are regular.

Consider the measure µ =
∑

q∈Q δq. Clearly, this measure is σ-finite; however,
it is neither locally finite nor outer regular.

We introduce the following spaces of measures on E:

M(E) := {Radon measures on (E,B(E))} ,

Mf (E) := {finite measures on (E,B(E))} ,

M1(E) := {µ ∈ Mf (E) : µ(E) = 1} ,

M≤1(E) := {µ ∈ Mf (E) : µ(E) ≤ 1} .

The elements of M≤1(E) are called sub-probability measures on E. Further, we
agree on the following notation for spaces of continuous functions:

C(E) := {f : E → R is continuous } ,

Cb(E) := {f ∈ C(E) is bounded } ,

Cc(E) := {f ∈ C(E) has compact support } .

Unless otherwise stated, the vector spaces C(E), Cb(E) and Cc(E) are equipped
with the supremum norm.

Lemma A.1. Let µ ∈ Mf (E), then for any ε > 0, there is a compact set K ⊂ E

with µ(E\K) < ε.
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Proof. Since E is seperable, there exists a countable dense subset {x1, x2 · · · } of
E. Thus, for each n ∈ N, E = ∪iB1/n (xi) . Note that µ is finite, so for any ε > 0

and n ∈ N, we can find Nn = Nn,ε ∈ N such that

µ

(
E\

Nn⋃
i=1

B1/n (xi)

)
<

ε

2n
.

Let

A =

∞⋂
n=1

Nn⋃
i=1

B1/n (xi)

By construction, A is totally bounded, so A is compact. Furthermore, it follows
that

µ(E\A) ≤ µ(E\A) <
∞∑

n=1

ε

2n
= ε .

We complete the proof.

Theorem A.2. If E is Polish and if µ ∈ Mf (E), then µ is regular. In particular,
Mf (E) ⊂ M(E).

Proof. Outer regularity, Step 1. Let B ⊂ E be closed and let ε > 0. Let d be a
complete metric on E compatible with the topology. For δ > 0, let

Bδ := {x ∈ E : d(x,B) < δ}

be the open δ-neighborhood of B. As B is closed, we have
⋂

δ>0Bδ = B. Since
µ is upper semicontinuous, there is a δ > 0 such that

µ (Bδ) ≤ µ(B) + ε .

Step 2. Let B ∈ B(E) and ε > 0. Consider the class of sets

A := {V ∩ C : V is open , C is closed }

Clearly, we have B(E) = σ(A). It is easy to check that A is a semiring. Hence
by the approximation theorem for measures, there are mutually disjoint sets
An = Vn ∩ Cn ∈ A, n ∈ N, such that

B ⊂ A :=

∞⋃
n=1

An and µ(A) ≤ µ(B) + ε/2.
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As shown in the first step, for any n ∈ N, there is an open set Wn ⊃ Cn such that
µ (Wn) ≤ µ (Cn) + ε2−n−1. Hence also Un := Vn ∩Wn is open. Let B ⊂ U :=⋃∞

n=1 Un. We conclude that µ(U) ≤ µ(A) +
∑∞

n=1 ε2
−n−1 ≤ µ(B) + ε.

Inner regularity. Replacing B by Bc, the outer regularity yields the existence of
a closed set D ⊂ B with µ(B\D) < ε/2. By Lemma A.1, there exists a compact
set K with µ

(
KC

)
< ε/2. Define C = D ∩ K. Then C ⊂ B is compact and

µ(B\C) < ε. Hence µ is also inner regular.

Let (E, dE) and (F, dF ) be metric spaces. A function f : E → F is called
Lipschitz continuous if there exists a constant K < ∞, the so-called Lipschitz
constant, with

dF (f(x), f(y)) ≤ K · dE(x, y) for all x, y ∈ E.

Denote by LipK(E;F ) the space of Lipschitz continuous functions with constant
K and by Lip(E;F ) =

⋃
K>0 LipK(E;F ) the space of Lipschitz continuous func-

tions on E. We abbreviate LipK(E) := LipK(E;R) and Lip(E) := Lip(E;R).

A family C of measurable functions E → R is called a separating family for
M(E) if, for any two measures µ, ν ∈ M(E), the following holds:(∫

f dµ =

∫
f dv for all f ∈ C ∩ L1(µ) ∩ L1(v)

)
=⇒ µ = v .

Lemma A.3. Let (E, d) be a metric space. For any closed set F ⊂ E and any
ε > 0, there is a Lipschitz continuous map ρF,ε : E → [0, 1] with

ρF,ε(x) =

{
1, if x ∈ F ,

0, if d(x, F ) ≥ ε .

Proof. Let

ρF,ε(x) :=

{
1− d(x,F )

ε , d(x, F ) < ε ,

0 , d(x, F ) ≥ ε .

Clearly, ρF,ε ∈ Lip(E; [0, 1]).

Theorem A.4. Let (E, d) be a metric space.
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(i) Lip1(E; [0, 1]) is separating for M(E).

(ii) If in addition, E is locally compact, then Cc(E)∩Lip1(E; [0, 1]) is separating
for M(E).

Proof. (i). Assume µ1, µ2 ∈ M(E) are measures with
∫
f dµ1 =

∫
f dµ2 for

all f ∈ Lip1(E; [0, 1]). Since µ1, µ2 are inner regular, it is enough to show that
µ1(K) = µ2(K) for any compact set K.

Now let K ⊂ E be compact. Since µi (i = 1, 2) are locally finite, there is
a open neighborhood U of K such that µi(U) < ∞. Since K ⊂ U , for any
0 < ε < d(K,U c) we have K ⊂ {x : d(x,K) < ε} ⊂ U .

Let ρK,ε be the map from Lemma A.3, we have 1K ≤ ρK,ε ≤ 1U . since
ρK,ε

ε→0−→ 1K , we get by dominated convergence that

µi(K) = lim
ε→0

∫
ρK,εdµi .

Note that ϵρK,ε ∈ Lip1(E; [0, 1]) ∩ L1(µ1) ∩ L1(µ2), by assumption,∫
ρK,εdµ1 = ε−1

∫
(ερK,ε) dµ1 = ε−1

∫
(ερK,ε) dµ2 =

∫
ρK,εdµ2

This implies µ1(K) = µ2(K); hence µ1 = µ2.

(ii). If E is locally compact, then in (i) we can choose the open neighborhoods
U of K to be relatively compact. Thus ρK,ε has compact support and is thus in
Cc(E).

A.2 Weak and vague convergence
In the lsat section , we saw that integrals of bounded continuous functions f
determine a Radon measure on a metric space (E, d). If E is locally compact, it
is enough to consider f with compact support. This suggests that we can use
Cb(E) and Cc(E) as classes of test functions in order to define the convergence
of measures.

Definition A.3. Let E be a Polish space.
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(i) Let µ, µ1, µ2, . . . ∈ Mf (E). We say that (µn)n∈N converges weakly to µ,
formally µn → µ (weakly) or µ = w-limn µn, if∫

f dµn →
∫
f dµ for all f ∈ Cb(E) .

(ii) Let µ, µ1, µ2, . . . ∈ M(E). We say that (µn)n∈N converges vaguely to µ
formally µn → µ (vaguely) or µ = v-limn µn, if∫

f dµn →
∫
f dµ for any f ∈ Cc(E) .

Remark A.2. While weak convergence implies convergence of the total masses,
since 1 ∈ Cb(E), with vague convergence a mass defect (but not a mass gain) can
be experienced in the limit.
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