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Chapter 1

Discrete-time Markov chains

In this note, we denote by N all the non-negative integers, i.e., N =
{0,1,2,---}. Denote by N all the positive integer. We work throughout
with a probability space (2, F,P).

1.1 Introductions

1.1.1 Definition and basic properties

Let I be a countable set. Each i € I is called a state and [ is called the
state-space. We say that A = (\;);c; is a measure on I if 0 < A; < oo for
all 4 € I. If in addition the total mass ) ;.; A; equals 1, then we call A a

distribution.

Recall that a random variable X with values in [ is a function X : Q — I.

If we set

Ai=P(X =i)= foreachiel
Then A defines a distribution, the distribution of X. We think of X as
modelling a random state which takes the value 7 with probability ;.

We say that a matrix P = (pi;), ;; is stochastic if every row (pi;) :jer

is a distribution. We shall now formalize the rules for a Markov chain by a



definition in terms of the corresponding matrix P.

We say (Xp),,>q is Markov chain with initial distribution A and tran-
sition matrix P, if X has distribution A and for any n € N, conditional on
X, =1, X,41 has distribution (pij)jel and is independent of Xg, -+, X, 1.

More explicitly, these conditions state that
(i) foranyie I, P(Xo=1)=\.
(ii) for any n > 1 and j,4,40," -+ ,ip—1 in I.

P(Xpp1=7|Xn=14Xo=1d0, -+, Xp-1=1ip1)
=P (Xnt1 =7 Xpn=1) = pij.

We say that (X,),~ is Markov(A, P) for short. In formulating (ii) we have
restricted our attention to the temporally homogeneous case in which the

transition probability P (X,,+1 = j | X,, = i) does not depend on the time n.

It is in terms of properties (i) and (ii) that most real-world examples are
seen to be Markov chains. But mathematically the following result appears
to give a more comprehensive description, and it is the key to some later

calculations.

Theorem 1.1. A discrete-time random process (Xy,),,»q is Markov(A, P) if

and only if for any n > 1 and i1, -+ ,in € I,
P (Xo =1, X1 =2, -+, X = in) = Ny PiyisPiin " Pin_1in -
Proof. Note that for any n > 1 and ig, -+ ,ip41 in 1,
P(Xpt1 =tint1 | Xo=11, -, Xp = in)

]P)(XO = i17 T 7Xn = 7f.n’)(n-‘,-l = in-‘,—l)

P(Xo= i1, Xpn = in) Pininis




The next result reinforces the idea that Markov chains have no memory.

We write 6; = (6;) ;¢ for the unit mass at 7, where

1 ifi=j
51’]’ = .
0 otherwise.
Theorem 1.2 (Markov property). Let (X,),~, be Markov(\, P). Then,

conditional on Xy, = i, (Xm+n),>q i Markov(d;, P), and is independent of
the random variables Xg, - - , Xi,.
Proof. Tt usffices to show that for any event A € o(Xy, -+, X,,), and
By iman i 1,

P({Xm :ima“',Xm+n:im+n}ﬂA|Xm:i) (11)

= iimpimim+l o 'pim+n—lim+nP (A | Xm = /L)

Since Up2 10 (X, -+, Xm+n) 18 a m-systerm generating o (Xomn), g, (1.1)
implies the desired result. By the same reason, we only need to consider the

case of elementary events

A={Xg=1i1, X =im} .

Note that
P(Xo =1, , Xontn = bm+n)
= iy Pimims1 " Pimin_1imin X P(Xo =11, , Xin = i) ,
Which follows from Theorem 1.1. O

1.1.2 Multistep transition probabilities

Assume (X,,)n>0 is Markov chain with transition matrix P. The transi-
tion probability p;; = P (Xp4+1 = j | X, = i) gives the probability of going
from ¢ to j in one step. Our goal in this section is to compute the probability

of going from i to j in n steps:

pg-l) =P (Xntm =J | X = 1)



By Markov property, the definition above is independent of m. We denote
P = (p

)ijeI’ and call it the n step transition matriz.

Proposition 1.3 (Chapman-Kolmogorov equation). For any n,m €
N, ptm+n) — p(m) p(n) " In other words, for any i,j € I,

m+n
Py = Do nl
kel

Proof. We do this by breaking things down according to the state at time

m.

Pi( mtn = J) ZP i<Xm+n:j‘Xm:k)
kel

By Markov property, P; (Xpqn =7 | Xm =k) = p,(g), thus we get the C-K
equation. 0

Note that P1) = P, by induction we get:

Corollary 1.4. For alln € N, P™) = pn_ In other words, for any 1,5 € I,

(n) _ e ime
p” = DPii1 Piqio Pip_1j-
11, yin—1€1

Corollary 1.5. Let (X,,)n>0 be Markov(\, P), then for any n the distribu-
tion of X, is AP™, where we regard distributions ( and measures) as row

vectors whose components are indexed by I.

1.1.3 Class structure

It is sometimes possible to break a Markov chain into smaller pieces,
each of which is relatively easy to understand, and which together give an
understanding of the whole. This is done by identifying the communicating

classes of the chain.



Let (X;,)n>0 be a Markov chain with transition matrix P. Define the
hitting time of state j is a random variable Q@ — {0,1,2,---} U {oco} and
given by

7 =inf{n >0: X, =j}.
where we agree that the infimum of the empty set @ is co.

We say that i leads to j and write ¢ — j if
P; (Tj < OO) > 0.
We say ¢ communicates with j and write ¢ <+ j if both ¢ — j and j — 3.

Proposition 1.6. For distinct states ¢ and j, i leads to j is and only if

pl(-;-l) > ( for some n = 0.

Proof. Observe that for given n € N,
o0
pz(?) <P (15 < 00) < Zpl(?) .
n=0
Then the desired result follows. O

Clearly, from Proposition 1.6 we see that ¢ — j and j — k imply ¢ — k.
Also ¢ — i forany state i. So “«>” satisfies the conditions for an equivalence

relation on I, and thus partitions I into communicating classes.

Definition 1.1. We say that a nonempty set A C [ is closed if it is impos-
sible to get out, i.e., for any ¢ € A, i — j implies that j € A. A statei € 1

is absorbing if {i} is a closed class.

Remark. It’s easy to see that A C I be closed, then for any communicating

class C, either CC Aor CNA=02.

Definition 1.2. A chain or transition matrix P is called irreducible, if I
is a single communicating class, i.e., any two state communicate with each

other.



Proposition 1.7. [ is irreducible if and only if all the nonempty proper

subset of I is not closed.

Proof. If A'G I is closed, pick i € I\A and j € A, then [i]N[j] = @. I has
at least two communicating class, so is reducible.

If I is irreducible, for any nonempty proper subset A. Pick any i ¢ A,
j & A, since I is irreducible, i leads to j. Thus A is not closed. O

The advantage of closed set is that we can reduce the state sapce. Sup-

pose A is closed, then for all i € A,
Pi(X,€A VneN)=1.

Thus P|a = (pij)ijea is a transition matrix. If P(Xo € A) = 1, then, in
fact, (Xp)n>0 is @ Markov chain with transition matrix P|4. In addition, if

A is a class, then P|4 is irrducible.

EXERCISE

9 EXERCISE 1.1. Show that every transition matrix on a finite state-space
has at least one closed communicating class. Find an example of a transition

matrix with no closed communicating class.



1.2 First step analysis

Let (Xp), 5o be a Markov chain with transition matrix P. The hitting
time of A C [ is the random variable 74 : © — {0,1,2,--- } U{oo} given by

Ta=inf{n>0:X, € A},

where we agree that the infimum of the empty set @ is co. The probability

starting from i that (X5,),-, ever hits A is then
hizpi(TA<OO) .

When A is a closed class, h; is called the absorption probability. The mean

time taken for (X,),., to reach A is given by

ti=E;(ta) = ZnPi (TA =n) + cclP; (T4 = 00) .

n=0

We shall often write less formally

hi = ]P)z( hit A), ti = Ez( time to hit A) .

1.2.1 Hitting probabilities

Theorem 1.8. The vector of hitting probabilities (h;);c; is the minimal

non-negative solution to the system of linear equations

h; =1, for i € A.
(1.2)

hi =3 ;erpijhj, forig¢ A
(Minimality means that if x = (x;);c; is another solution with x; > 0 for all
i, then x; > h; for all i. )
Proof. First we show that (h;),.; satisfies (1.2). Clearly, if Xo =i € A, then
74 =0,s0 h; = 1.
If Xo=1i¢ A, then 74 > 1,

hi=P;i(ra<o0) =Y pyPi(ta<oo| X1 =j),
jel



by the Markov property
Pi(TA<OO‘X1:j):Pi(TA—1<OO’Xlzj):Pj(TA<OO):hj.

Thus when i ¢ A,

hi = _pijhj.

JeI
This method is called sometimes first step analysis.

Suppose now that x = (z;);c; is any solution to (1.2). Then h; = z; = 1
for i € A. Fori ¢ A,

xi = sz‘jivj = Zpij + Zpijwj
Jjel JjEA J¢A
Substitute for x; to obtain
Ti = Zpij + sz‘j (Z Pk + ijkﬂfk)
JEA jEA kcA k¢ A

=P (X1 € A)+ P (X1 ¢ A, Xo € A)+ > > pijpjais
jgA kA

By repeated substitution for x in the final term we obtain after n steps
.’El:PZ(Xl GA)—I——l—PZ(Xl %A, , Xn_1 ¢A,Xn€A)

+ Z T Z DijiPjrja 9 Pjn—1inLin -
Now if z is non-negative, so is the last term on the right, and the remaining

terms sum to P; (14 < n). So z; > P; (74 < n) for all n and then

x; = lim Py (14 <n) =P; (14 < 0) = h;. O

n—o0

Remark. In fact, using first step analysis, we have

ZpikIP’k(TA < o0) =Pi(0a < ), foralliel.
kel

where 04 = inf{n > 1: X,, € A}, is called the first passage time of A.
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Figure 1.1: brith-death chain

¢ ExampLE 1.2 (Birth-death chain). Consider the Markov chain with di-
agram in Figure 1.1 where, for i = 1,2,--- , we have 0 < b; =1 —d; < 1.
Let po1 = 1. we wish to calculate the absorption probability starting from <.
Such a chain may serve as a model for the size of a population, recorded each
time it changes, b; being the probability that we get a birth before a death
in a population of size i. Then h; = IP;( hit 0) is the extinction probability
starting from 3.

We write down the usual system of equations
ho=1
h; = bihi+1 + d;hi_1, fori=1,2,---

This recurrence relation has variable coefficients so the usual technique fails.

But consider u; = h;—1 — h;, then bju;+1 = dju;, so
s = (%Y, — (Gdicrdi
i+1 bz’ i bibi—l . bl 1 Vi U1
where the final equality defines +; for ¢ > 1. Then uj + - - - 4+u; = hg — h;, so
hi=1l-ui(y+- - +7%-1)=1-Ri

where 79 = 1, and where the final equality defines R; 1. At this point u

remains to be determined.

(i) Inthecase R:=) ;2,7 = 00, the restriction 0 < h; < 1 forces u; =0
and h; =1 for all i > 0.



(ii) Butif R =) 2,7 < oo, then we can take u; > 0 so long as h; > 0,
that is u; < %. Thus the minimal non-negative solution occurs when

Uy = }% and then

R.
hi=1-—=
R
In this case, fori =1,2,--- , we have h; < 1, so the population survives

with positive probability.

¥ ExAMPLE 1.3 (Gamblers’ ruin). Consider the Markov chain with diagram

in Figure 1.2, where 0 < p =1 — ¢ < 1. The transition probabilities are
Dii—1=¢,piit1 =p fori=1,2,---

Imagine that you enter a casino with a fortune of £1 and gamble, £1 at a
time, with probability p of doubling your stake and probability ¢ of losing
it. The resources of the casino are regarded as infinite, so there is no upper

limit to your fortune. But what is the probability that you leave broke?

qQ p Q9 p q p
1

0o 1 DL +1

Figure 1.2: gamblers’ ruin

Set h; = P;( hit 0), then A is the minimal non-negative solution to

ho = 1
hi = phiy1 4+ qhi—1, fori=1,2,---

Now we can see this model is particular case of brith-death chain(We dont’s

care the transition probability in state 0). So by Example 1.2,

R=Y" () |
im0 \P
(i) If p > q, the solution is h; = (%)i. for all i > 0.

10



(ii) If p < g, which is the case in most successful casinos, we have h; = 1
for all 7. Even if p = ¢, i.e., you find a fair casino, you are certain to
end up broke (But the mean breaking time is infinity, which we will

see later). This apparent paradox is called gamblers” ruin.
9 ExAMPLE 1.4 (P IZE KEE). HE N BRI REE, AE 20,020, &
por =1, WML i > 1,

1 exp (—ci™®) 1—exp(—ci™®)
Piit1 = 5o Pii-1 = 5 Pi T T

PAPRIE FLIXAA I AR KBER R AR, 2 hy = P;(19 < 00), NI
hi = piit1hiv1 + pii—1hi—1 + pishs
XN ILFEIRE hy, 133
hi—hiy1 = Piict (hi—1 — hy)
DPiji+1

¥ piic1 BA by ¥ piioy FA di, WA KBRS K 20t S R ATHRIE, hy &
N1 HHEAY R = oo, Hrp

oo k
R:1+Zexp (—cha) .
k=1 j=1

1.2.2 Mean hitting times

Theorem 1.9. The vector of mean hitting times (t;);.; is the minimal non-

negative solution to the system of linear equations

t; =0, for i € A.
(1.3)

tizl—l—zngpijtj, fori ¢ A.

Proof. First we show that (t;);cr satisfies (1.3). If Xg =i € A, then 74 = 0,
sot; =0.

If Xo=1i¢ A, then 74 > 1, so, by the Markov property,
Ei(ta| X1 =J)=1+E;j(ta—1| X1 =J)=1+E;(r4) ,

11



and
ti=Hi(ra) = > Ei(ra| X1 =)
jel

=Pi(X1=j) =1+ pijt;-
JgA
Suppose now that y = (y;);c; is any solution to (1.3). Then ¢; = y; = 0 for
i€ A Forig¢A,

yi=1+ Zpijyj

j¢A

=1+ Zpij (1 + ijkyk>

i¢A k¢ A

=P (ta> 1)+ P (Ta22)+ > > pijpjkte
A kgA

By repeated substitution for y in the final term we obtain after n steps

yi=Pi(ta=1)+---+Pi(ta>n)+ Z Z PijiPjije " * Pjn—1JnYjn
j1¢A jn¢A

So, if y is non-negative,
yi 2Pi(ta=21)+-+Pi(ta>n)

and, letting n — oo

yi 2 Y Pi(ra >n) =E;(ra) =t; O

n=1

Remark. In fact, using first step analysis, we find that

I+ ZpikEk(TA) =E;(ca), foralliel,
kel

where o4 =inf{n > 1: X,, € A}.

12



EXERCISE
Y EXERCISE 1.5. Let A,B C I and AN B = @. Let x; be the probability
starting from 4 that (X,,),>0 hits A before hitting B. In other words,

x; =Pi(ta<7p), forany i € I.

(i) Sohw that
Zpijpi(TA <71B) =Pi(ca <oB).
jel
(ii) Show that (z;);c; is the minimal non-negative solution to the system

of linear equations

x; =1, fori € A.
x; =0, for i € B.
Ti =Y jer Pijtj, fori¢ A B.

Y EXERCISE 1.6. Let G;; = E;(V}). (The definition of Vj is given by (1.4.2)
)

(i) Using first step analysis, show that for any j is fixed, (Gyj),c; is the

minimal non-negative solution to the system of linear equations

Gij =Y pirGrj + 0ij -
kel

(ii)* Using cycle trick, show that for ¢ is fixed, (Gij)jel is the solution to

the system of linear equations

Gij =Y Girprj + 0ij -
kel

In fact, that is G = PG+ 1 =GP+ 1, or G = (I — P)~!. We can see this
from G =>"7° , P".

13



Y EXERCISE 1.7. A C I. Let

A .
Gij = Ei < > 1{Xn=j}>

0<n<T

(FRA DX IBRE AR B 2L, WL Oct 8 PR ZE1E). Show that

G =1, forie Aorje A
G} = Yigapix Giy + 0 (1.4)
= ZkgA G4 prj + 0ij, fori,j ¢ A.

In fact that is GA|Ac = GA‘AcP|Ac +I|Aa = P‘AcGA|Ac +I|Ac. Then GA‘AC =
(Ilac — P|ac)~t. We can see this from G4|4c = 307 (P|ac)™.

14



1.3 Strong Markov property

In Section 1.1 we proved the Markov property: for any time m, condi-
tional on X,, = i, the process after time m begins afresh from i. Suppose,
instead of conditioning on X,, = ¢, we simply waited for the process to hit
state 7, at the random time 7;. What can one say about the process after
time ;7 What if we replaced 7; by a more general random time, for example
7; — 17 In this section we shall identify a class of random times at which a
version of the Markov property does hold. This class will include 7; but not
7; — 1, after all, the process after time 7; — 1 jumps straight to ¢, so it does

not simply begin afresh.

Definition 1.3. A random variable 7 : Q@ — NU {oo} is called a stopping
time if the event {7 < n} € 0(Xo, -+ ,X,) for any n € N,.

Obviously, {7 < n} € o(Xp,---,X,) can be replaced by {7 = n} €
o(Xo, -+ ,X,) for any n € Ni. Intuitively, 7 is a stopping time if by
watching the process, you know at the time when 7 occurs. If asked to stop

at 7, you know when to stop.

¥ ExXAMPLE 1.8.
(i) The first hitting time 74 is a stopping time because
{ta=n}={Xo¢A,.... X, 1¢AX, €A}
(ii) The first passage time o4 is a stopping time because
{oa=n}={X1¢A,.... X, 1¢€AX, =7}
(iii) The last exit time of A C I
Ly=sup{n>0:X,c A}

is not in general a stopping time, because the event {LA = n} depends

on whether (Xp4m),,>; visits A or not.

15



We shall show that the Markov property holds at stopping times 7. That
is, if 7 < oo and we konw the state of the chain when it stops, i.e., X; = 1,
then the history (Xo, -, X;) and the future (X,4,)n>0 are independent,
and the future (X;4n)n>0 is Markov chain starting at ¢ with the previous

tansition matrix.

On the event {7 < oo}, we define (Xo,---,X;) = (Xo,---,X,) when
{r = n}, for all n > 0. Since {7 = n} € o(Xo, -, X,), it is well-defined.
We regard (Xo, - -+, X;) as an random orbit in U,>oI" ! equipped with a o-
algebra consisting of all the subset of U,>oI™"!. The first problem is, What
are the events determined by (Xo, -, X;), i.e., what is o(Xo, -+, X;) 7

For any A C Upsol™tL, let A, = AN I"! then A = U,>0A,. Then

{(Xo,,X;) € A} = Lﬂ{(XOV",Xn)EAn}ﬂ{T:n}.

n=>0

Let F,, = 0(Xo, -+ ,X,) for all n > 0. Thus we have
o(Xo, -, X;)={BeF:Bn{r=n}eF, foralln > 0}. (1.5)

Theorem 1.10 (Strong Markov property). Let (X,),,» be Markov(\, P)
and let T be a stopping time of (Xn)nzo. Then, conditional on 7 < oo and
X7 =1, (Xr4n),>q I8 Markov(d;, P) and independent of (Xo, X1,. .., X;)

Proof. We only need to prove that for any B € o (Xo, X1,...,X;),
P({Xr = jo, Xrt1 = s, Xrin =} N B | 7 < 00, X; = 1)
:PI(XQ =70, X1 =7J1,-..,Xp :Jn) P(B | T<00, X, = Z)
Which is equivalent to
IEI>({)(T :jOaXTJrl :jla"'aXTJrn :]n}ﬁBﬂ{T < OO}m{XT :Z})
:Pl(XO :jo,Xl :jl,...,Xn :]n) P(BQ{T < OO}Q{XT = l})
It’s sufficient to prove that for any m > 0,
P({XT =30, X741 = J1s-- -, Xr4n :jn}ﬁBﬂ{T = m}ﬂ{XT = Z})
:Pl(XO :jo,Xl :]1,,Xn:]n)P(Bﬂ{T:m}ﬂ{XTZZ}) ,

16



ie.,

P({Xm:jo,Xm+1 :jl,...,Xm+n:jn}ﬂBﬂ{T:m}ﬂ{Xm:i})
:Pi(XOZjo,Xl :jl,...,Xn:jn)P(Bﬂ{T:m}ﬂ{Xm:’L'}),

Note that BN {r = m} € o(Xo, -, Xyn) so, by the Markov property at

time m we konw the indentity holds. So we comlpete the proof. O

9 ExAMPLE 1.9 (ZE$5H}i). We now consider an application of the strong
Markov property to a Markov chain (X,,),,~, observed only at certain times.
In the first instance suppose that we observe the original chain only when it

moves. Let Sy =0 and for m=0,1,2,---
Sm+1 = inf{n >8S,+1:X, 7& Xsm}

Assume there are no absorbing states. It’s easy to find that the random
times Sy, for m > 0 are stopping times. The resulting process (Z,)n>0 is
given by Z, = Xg, and, by the strong Markov property
P(Zm+1 =tm+1 | Zo =11, Zm = im)
=P (Xs,,  =im+1 | Xg, =i1,...,Xs,, =im)
=P;,, (X5, = imt1) = Dimimis
where p;; = 0 and, for i # j, Pij = pij/(1 — pii). Thus (Zp),,5¢ is a Markov

chain with transition matrix P.

¥ ExamPLE 1.10 (FRFEIWME 7). A second example of a similar type arises
if J C I is some subset of the state-space and we observe the chain only
when it takes values in J. The resulting process (Y,),,~, may be obtained

formally by setting Y,,, = X7,, , where
To=inf{n >0: X, € J}
and, form=0,1,2,---

Tnt1 =inf{n >T,, : X,, € J}

17



Let us assume that P (T}, < co) = 1 for all m. For each m we can check
easily that T,,, the time of the m th visit to J, is a stopping time. So the
strong Markov property applies to show, for iy,...,i,m41 € J, that

P(Yi+1 =im+1 | Yo=11,.., Y = im)

=P (X1, = imt1 | Xy =11,..., X1, =im)

=P, (X1, = im+1) = Dimimss

Where pl‘] = P7,<O—J = j) fOI‘ all Z,j S J

¥ ExAaMmPLE 1.11. Let (X,,)n>0 be gamblers’ ruin We know from Example

qQ p 9 p q p
1

0o 1 hE 1

Figure 1.3: gamblers’ ruin

1.3 the probability of hitting 0 starting from 1. Here we obtain the complete
distribution of the time to hit 0 starting from 1 in terms of its probability

generating function. Set
7; =inf{n >0: X, = j}

and, for 0 < s < 1,
o(s) =Eq1 (s°) = Z}Pﬁ (to=mn)s".
n=1

Using first step analysis,

¢(S) = El (STO) :pEl (STO ’ X1 = 2) + qu (STO ’ Xl = 0)
=psE; (s | X1 =2) +¢qEi (s| X1 =0)
=psEz (s™) +gs

18



Now we try to compute Eg (s™). Under P, we have 79 < 71. Apply the
strong Markov property at 71 to see that conditional on 7 < oo (and of

course X, = 1), we have 79 — 71 is independent of 7.

Eo (s™) =Eg (s™ ™™ | 71 < 00) Py (11 < 00)
=E, (8711{71<OO}) E, (STole | 71 < OO)
=E (s™)Ey (s | 71 < 00)
The space is translation invarint, so the distribution of 7 under P, coincides
with the distribution of 79 under Pi, so E2(s™) = ¢(s). On the other

hand,by strong Markov property, conditional on 73 < oo, 79 — 71 has the

same distribution of 79 under Pj, thus Eo (s | 74 < 00) = ¢(s). Then
Ep (s) = ¢(s)*.
Thus ¢ = ¢(s) satisfies

ps¢® — ¢ +qs =0 (1.6)

and this equation has two solutions: (14 +/1 — 4pgs?)/2ps. Since ¢(0) < 1,
and ¢ is continuous we are forced to take the negative root at s = 0 and
stick with it for all 0 < s < 1. Thus

1—+/1—4pgqs? (1.7)

8(s) = 5

(i) To recover the distribution of 7y we expand the square-root as a power

series:

o(s) = 2; {1 - <1 + % (—4pgs?) + % (—é) (—dpgs®)? /2! + .. )}

:qs+pq233—|—...
:8]P)1(T0:1)—|—S2]P)1(T0:2)+83P1(T0:3)—|—...

The first few probabilities Py (79 = 1) ,IP1 (19 = 2) , - - - are readily checked

from first principles.
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(ii) On letting s 1 1, we have ¢(s) = Py (19 < 00), so

Pl (TO < OO) =

1—y1—4pg | 1, if p<gq.
2p q/p, ifp>q.

(iii) We can also find the mean hitting time using

E1 (m) = lim¢/(s).

It is only worth considering the case p < ¢, where the mean hitting

time has a chance of being finite. Differentiate (1.6) to obtain

2psp¢’ +pd” —¢' +¢=0,
SO
¢'(s) = (po(5)* +q) /(1-2psg(s)) — 1/(1-2p) =1/(q—p) ass?1.
EXERCISE
9 EXERCISE 1.12. 7, 0 both are stopping times. Then
(i) 7 Ao, TVo, T+ o are stopping times.
(ii) Assume o > 7, give an example such that o — 7 is not stopping time.

9 EXERCISE 1.13. Let &1,&s, ... be independent identically distributed ran-
dom variables with P (§; =2) = P (& = —1) = 1/2, and set Xp = 1, X,, =
Xo+& + -+ &, for n > 1. Show that the probability generating function
o(s) = E(s™) now satisfies

s¢3 —20+5=0

20



1.4 Recurrence and transience

Let (Xp),>o be a Markov chain with transition matrix P. We say that

a state 7 is recurrent if

is transient if
P; (X, =i i0. )=0.

Thus a recurrent state is one to which you keep coming back and a transient
state is one which you eventually leave for ever. We shall show that every

state is either recurrent or transient.

1.4.1 Decomposing orbit by excursions

Recall that the first passage time to state i is the random variable T;
defined by
T,=inf{n>1:X, =i} ,.

where inf @ = co. We now define inductively the r th passage time TZ-(T) to
state i by
Ti(O) -0, Ti(l) —T

and, for r =0,1,2,---
T —inf{n > T 410 X, = i}

The length of the rth excursion to ¢ is then

o, =

) T;(r) _ T'i(r_l) , if 7’;(7"_1) < 0.
oo, otherwise .

Our analysis of recurrence and transience will rest on finding the joint dis-

tribution of these excursion lengths.
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Lemma 1.11. For r = 2,3, -+, conditional on Ti(rfl)

pendent of (XO, e ,XTV<T_1)) and

(r)

< o0, 0; 7 is inde-

P (Ulm =n] 7Y < oo) =P, (T; =n)

)

Proof. Apply the strong Markov property at the stopping time 7" = Ti(r_l).

It is automatic that X7 = ¢ on T < oo . So, conditional on T" < oo
(XT4n) 50 is Markov (;, P) and independent of Xo, X1, ..., X7. But

al( =inf{n >1: Xp, =i}
SO azm is the first passage time of (X74,),( to state i. O

Corollary 1.12. For any positive integer r and ny,--- ,n, € Ny,
T
1 2
]Pi (UZ( ) :nluo-g ) =Nz, - 7O-r§r) :nT> = H]P)Z (Ui = nS)

Moreover, {UET)}SL are i.i.d. r.v.s under P; if P;(o; < 00) = 1.

(r)

Also, we can compute the distribution of 7"’ in terms of the return

probability
pij = Pi(0j <o0) .
Then
Corollary 1.13. For any r € N*, We have
P (Ti(r) < oo) =i P (03 < 00).

Proof. When r = 1 the result is true. Suppose inductively that it is true for

r, then
P (T(TH ) =P (TZ < oo and U(T—H) < oo>
=P (af’"“) <oo| T < oo) P (Ti(” < oo>
=P (0, < 00) P (71" < o)
— pis(pis) P (i < 50) = (pis) P (6 < ) .
So by induction the result is true for all r € N,. O
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1.4.2 Visits number and recurrence

Let us introduce the number of visits V; to ¢, which may be written

in terms of indicator functions as

Vi=> Lx.—i}-
n=0

It’s easy to observe that if the Markov chain starts at state ¢, i.e., Xg = i,
then
{Vi>r} = {1 < o0}.

Then P;(V; > n) = (pi;)"™ for any n. Thus we have shown
Theorem 1.14. Under P;, the number of visits V; is geometric(1 — pj;).

As a consequence,

1, pu=1

PKVEZZOO)::{

0, pi <1.

In particular, every state is either transient or recurrent. Besides,

Ei(Vi) =Y Pi(Vi>r) = (o) = { b= 1.
r=0

r=0 l_pii7 pll < 1

On the other hand, V; is the sum of indicator functions, so
oo oo
By (V) = Y Py (X =) = Y plf.
n=0 n=0
Finally, we have got the necessary and sufficient condition of recurrence.

Theorem 1.15. The following dichotomy holds:

(i) i is recurrent < p; =1 > > pg?) = 00.

(ii) i@ is transient < py; <1<y 2 p(@) < o0.

i

Another proof using first passage decomposition is given in Exercise 1.21.
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First we show that recurrence and transience are class properties.

Theorem 1.16. Suppose state i is recurrent, and © — j, then
(i) j—i, and Pj(1; < 00) = 1.
(ii) j is recurrent.
Proof. First we show that P;(7; < oo) = 1. Since P;(V; = oo) = 1, there
must be P;(V; = oo, 7; < 00) = P;(7; < 00). On the other hand,

{Vi=oo,mj<oo}={ ) lix,—p =007 <0}

TL}T]'

Thus, by strong Markov property,
P; (‘/z =00,7; < OO) :Pi(Tj < OO)[PJ‘(V; = OO)

Thus
Pj(Vi=00) =1.
But Pj(V; = 00) < Pj(1; < 00) < 1, so we get Pj(1; < o0) = 1.
Since j < i, there exists [,m > 0 with pg-) > 0 and pg-zn) > 0, and, for all
r>0
PG = )l
So

0 1L (r4m)
20 =D P’ S oy D P
=0 Pij Pji " r=0

Hence j is also recurrent by Theorem 1.15. Another proof of (ii), using the

partition of orbits by excuision , can be found in Exercise 1.22. ]

Corollary 1.17. Recurrence and transience are class properties, and every

recurrent class is closed.
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1.4.3 Absorption probability test

The following theorem relates the recurrence with absorbtion probability.
Intuitively, a state ¢ is recurrent, then the chain must return to i with

probability 1 from any state i leading to. And the converse is ture.

Theorem 1.18. State i is recurrent if and only if for any state j such that

i leads to j, there must be P; (1; < o00) =1 .
Proof. Sufficiency : If i — j implies P; (7; < 0o) = 1, since
]P O'Z<OO sz] TZ<OO) )
jel
and for any j such that p;; > 0, P; (7; < oo) = 1. Thus P; (0; < 00) = 1.
Necessity : See Theorem 1.16. ]

We will need the following corollary in Section 1.8, which asserts that
irreducibile and recurrent chain will visit any state with probability one, no

matter what the initial distribution is.

Corollary 1.19. Suppose P is irreducible and recurrent. Then for all state

j we have P (0; < 00) =1,
Proof. By total probability formula we have

P(oj < o0) = ZPXO—z i (05 < 00)
icl

Note that ¢ is recurrent, P; (0; < co) = 1. and by Theorem 1.18 we konw
that P; (05 < 00) =P; (15 <o0) =1, forall j #i. SoP(o; <o0)=1. O

Absorption probability test : If P is irreducible, then P is recurrent if

and only if for any state 7, (1.8) has a unique solution: z; =1,V j € I.

€T, = 1.
Tj =) piar, Vj#i. (1.8)
kel

2; >0, Vjel.
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¢ ExAMPLE 1.14 (Recurrence of the birth-death chain). Let (X,,),>0 be a
irreducible birth-death chain with birth probability b; and death probability
di. Let Ry =1+, P R =1+ 372, 4k By Example 1.2,

(i) if R < o0, x; =1— REI is a solution not equals 1, so the Markov

chain is transient ;
(ii) if R = oo, then x; = 1,Vi € Ny, the chain is recurrent.

Therefore, the Markov chain is recurrent if and only if R = oco.

9 ExamPLE 1.15 (\-biased random walk on homogeneous tree T?). Let

(X,)n>0 be the A-biased random walk on homogeneous tree T¢. Let
Y, = |X,| for each n € N,

then (Y},)n>0 is a birth-death chain with birth probability b; = )%d‘ (Xn)n>0
hits it’s root if and only if (Y,)n>0 hits 0, thus the recurrence of {X,}
coincides with {Y,,}. By Example 1.14, R = 1+ Y32, (3)¥, hence {X,} is

recurrent if and only if A > d.

¢ EXAMPLE 1.16. FA1K% & Example 1.4 |5 [REEH IR . XA KRN
FTZYR, Fow R B AEAN T WSO T R RIS A 1EN 1. B Example 1.4 #1f)
W, FRATRIE LD IR IR 2 HALY R = oo, Hith

00 k
R=1+ Zexp (—ch‘“)
k=1 j=1

(i) # c=0, 0 R=oo, LIREEHIR, THEMT S BE R R H BEHLIESD.
(i) #Hc>0 Ha>1H,
k

k oo c
Zj_a<2j_°‘<oo,exp (—c j_o‘) >e>0
j=1 j=1

Jj=1

T R = oo, HIREEHIR.
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(i) #HFec>0. Ha<l1Hh

ki-o y c 4
ZJ ~ 1—o exp —C;J ~ exp <_1—ak > .

T R < oo, LIREEHIR.

(iv) #c>0. Ha=1H#

k k
Zj_l =~ log k, exp (—ch_o‘> ~ k¢

j=1 j=1

TRYEAMNY c <10 R=c0.

Aa

Figure 1.4: ZHHUE S IR

a:
W

, IR T S50 X R W Figure 1.4 fin, Ho st RRE IR, BA&RRIE

N

i @

9 ExAaMPLE 1.17 (Simple random walk on Z%). The fact is when d = 1,2,

the walk is recurrent, but when d > 3, the walk is transient.

Suppose we start at 0. It is clear that we cannot return to 0 after an odd
number of steps, so p(()%)nﬂ) = 0 for all n. Assume we return to 0 after 2n
steps. Of these 2n steps there must be [ up, [, down in the rth direction,

with I1 + -+ 4+ [4 = n. By counting the ways in which this can be done, we
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obtain
2n)! 1
(11!)2 e (ld!)2 (2d)2n°

o = Po(Sm=0)= >
ll+---+ld:n

where [, take values in N for all r =1,--- ,d. We will prove
Py (San =0) ~Cn"%.
(i) when d =1, using Stirling formular n! ~ (n/e)"v2mn we know

(2n) (2n)! 1 1

Poo ™ =02 " 220 ¥ mn
So EoVo = 32020 p(()g) = 0.

(ii) When d = 2,

(2n)! 1 (2n)! 1 n!  nl
Py (S2n, = 0) = T2 2420 il 420
llg;_n (L)% (112420 nln! 42 hg;_n 111! 151!

_QnLiL:n n\ 1 /m\® 1
S\ n 42"120 1)\n—1) 42\ n ™m

Also, we have EgVp =7 péﬁ) = 0Q.

(iii) When d = 3,
(2n)! 1
PO (SQn == 0) — 7
l1+l§3=n (ZI')Q (l2|>2 <l3')2 62

_ 1 (2n)! 3 n! 1)\?
- 22n plpl [11l5113! 37

li+lo+l3=n

2 <l1lzl3> (;>n -

li+la+i3=n

Note that

the left-hand side being the total probability of all the ways of placing
n balls randomly into three boxes. For the case where n = 3m, we

have
n! < n! 3n 3v3
IVN3! ~ (m!)3 21
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for all ll, lg,lg. So

2= () G) o) 6) = ()
Doy < - - ~ | — as n — o0
n 2 mmm 3 ™
(6m)

by Stirling’s formula. Hence, > >~ (py, = < oo by comparison with
Soaon ™2 But g™ = (1/6)p5," " and pig™ > (1/6)pf" "

all m so we must have

for

(o]
EoVo =Y iy < oo,
n=0

and the walk is transient.

(iv) In the last, For the case when d > 4 we can use the same method with
d=3.

EXERCISE

9 EXERCISE 1.18. Prove that every finite closed class is recurrent.
TEXERCISE 1.19. B Gij = Ey(V;) = Y200 i) A ARE B (035 52 B % i
X). iE#
() BT < 00) = Bi(V; > 1) = pijlpg;)" " 3o j # i B HIEBHL
(11) flﬁ)zﬁ ( ) E':'E/Jénllﬁ IIEEHX‘—,Hifaj ivj, Gij = Pi(’rj < OO)ij. ﬁﬁ%ﬁlﬁ%?, Z:
EH (i) F4iie.
(iii) IRES ] 4E%Léﬂﬂé IE( ) < oo MAEMHIEEII AT N OL, IR § #ikY

9 EXERCISE 1.20. 7 is an invariant distribution of P. If state j is transient,
then 7; = 0.

9 ExERrCISE 1.21 (First passage decomposition). Denote by o; the first pas-

sage time to state j and set



Justify the identity

n

A =3 en
k=1

and deduce that
Pij(s) = 6ij + Fij(s)Pj;(s)

where - -
Py(s) =D p)s", Fiy(s) =Y "
n=0 n=0

Hence show that P; (T; < co) = 1 if and only if
S =
n=0

9 EXERCISE 1.22. We should point that decomposing the orbits into many
excursions is a very useful idea. Assume state i is recurrent and (X, )n>0-
start at ¢. Thus Ti(k) < oo for any £k € Ny. Then we can define Z; =

(Xp-ny s Xy

7

B0 =1n =1;ip #1,0 <k <n;n e Ny}

), is the k-th excursion. Zj take values in {(ig, -+ ,ip) :

(i) Show that conditional on X = i, {Z;} are i.i.d. random vectors taking

values in U,>ol™ 1.
(ii) Using (i) to show that if ¢ leads to j, then

(a) IP’i(aj < O'i) > 0.
(b) Pi(V; = 00) = 1.
(c) Pj(V; =00) =1 and Pi(1; < 00) = 1.

(iii) Read the proof of idea and Example 1.35.

30



1.5 Invariant distributions

1.5.1 Definitions and examples

Many of the long-time properties of Markov chains are connected with
the notion of an invariant distribution or measure. Remember that a dis-
tribution A is any row vector (\;);c; with non-negative entries. We say A is

an invariant distribution for P if
AP =\, (1.9)
When ) is a measure satisfying (1.9), we call it invariant measure.

Proposition 1.20. Let (X,),-, be Markov (r, P) and suppose that m is

invariant for P. Then (Xyin),>q is also Markov (r, P).

Proof. Clearly, P (X, =i) = (nP™), = m; for all i.
On the other hand, conditional on X4y = ¢, X;n1nt1 is independent of

(Xm, Xm+1,+ , Xmyn) and has distribution (pij)jel' 0

Based on this property, invariant distribution is also called stationary
distribution. Sometimes it also called equilibrium, the reason is given in
Theorem 1.39.

ATHIAREEZBARESH, KAVFIN BEFRIR” GNE. EHENSKRSHE
AR —AMz B BREMNA XK ZORT, AFEMET RIBERBLH N KL
HEEANEAAZE, RBRASEHE £F i LOOETE Y THARTH
Pe)) B A AR TAE T REGBEE, BF N, A, LPTA 4TIk S H
MBAASIEIE P RIK—F, N A, AR IE R KRBT, M2 E § R EAZE
JHETERLZASANM T RETEE ( —F B ETAE j OmE,
BP Nipij. Bk, ZMNMM BN ZL, X —FTHEBFY, K 2] j TR
TR \ipij , BATEBLA 0 B] j OBEERA \ipij.

ETARELA, MEeHEELE i LOBETERERE, Bk, & 74
FaBERTY, HEETLE, AAREEANME i WERE Y mp;i b
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Moi 4 BR S
H

éﬁ;éfﬁé‘ 7Ti<1 _pii) 79‘{*5%—:?{1{7, EP Zj TPy = Tq- 1&"‘7‘/?‘7 EJ
PR %R A

EETE A BEREF:

Proposition 1.21. A distribution 7 is invariant for P iff for any A C I,
S ompg= Y mpy. (1.10)
igAjeA €A, jeA

Proof. Sufficiency is obvious. To show necessity, we observe that

Z TiPij + Z TiPij = Z ”ipijzzﬁj'

igA,jeA €A, JEA JEAET jEA
Z Tipji + Z TiDij = Z TiDij = Zm-
€A A i€A,JEA €A, eI i€A
Since e 4 jea MiPij < 00, (1.10) holds. O

Remark. This proposition may be not ture for measure A, since ;. 4 jeA AiDij

may be oo.

¢ ExAMmPLE 1.23 (Birth-death chain). Consider the existence od invariant
distributions for birth-death chain mentioned in Example 1.2. bg = 1. If 7

is an invariant distribution, by Proposition 1.21, 7y = m1d; and
mid; = 7Ti—1bi—17 Vix>1.

Thus
bi—1 ~ boby -+ b

d; ~ dydy - d;
where the final equality defines 4; for i > 1. Let 49 = 1 and R = Yoo Y-

™0 :’%ﬂ'o, Vi = 1.

Then we have Rwo =1.

(i) In the case R = oo, this controducts that 7 is a distribution. So the

chian has no invariant distribution.

(ii) But if R < co, then let m; = l}% for all ¢ > 0. It’s easy to check that 7

is an invariant distribution, and is unique!
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¥ ExAMPLE 1.24. A transition matrix P is said to be doubly stochastic if
its COLUMNS sum to 1, or in symbols » ,.; p;j = 1. The ajective “doubly”
refers to the fact that by its definition a transition probability matrix has
ROWS that sum to 1, i.e., Zje]pij =1.

(i) If P is a doubly stochastic transition probability, then the uniform

measure, m; = 1 for all 7, is invariant.

(ii) If P is a doubly stochastic transition probability for a Markov chain
with NV states, then the uniform distribution, m; = % for all 1, is

invariant.

¥ EXAMPLE 1.25. & I = Ny, #RMFEN: XIT 0> 1, piic1 = N (A+1),piitk =
pe/(A+1),Vk = 1;por =1 i 1 =377 pp <m =370 kpr < A KiZGIK
BRI I3

A
A={n:n>id}, N A BBRIA Y0 Yo, mpin = Yoy mifii /(A + 1), 3
W fr= >, o A IR m A /(A + 1), TR

fE. Ede, N O BIBERIRAESE, B mp = mA/(A+ 1), Hik, dHER i > 2, £
+

1 i—1 .
Wizszlﬂ'jfi,j, VZ>2

Xt i SRA
1 oo i—1 1 s} oo 1 e} e} m
l—my—m = Xzzﬂjfifj = XZ > mifioj= XzﬂjZfr = (1 = o)
i=2 j=1 j=1i=j+1 =1 =1
Hop
SE=I =D pe=Y kp=m
r=1 r=1k=r k=1r=1 k=1
(& A H
_ A—m B A—m A
[ N I L S SIS W I WL |
s L p s eS8 ) i > 2. O
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1.5.2 Existence and uniqueness of invariant measures

In this subsection, we will discuss the existence and uniqueness of in-
variant measures and distributions for general Markov chains. Recall that
a measure A is invariant iff for any 4, j in I,

A=Y A\pji
JeI
It’s obvious that if the cA is invariant for any constant c. Hence, without

loss of generality we choose some k € I and set A = 1.

A sufficient condition for existence of invariant measures

In Theorem 1.8, we proved that the absorption probabilities is the mini-
mal non-negative solutions for (1.2), by iterating over the equations system.
Now, we can guess, is the invarint measure the minimal non-negative solu-

tion of the equations system above 7

For each i # k, we have

A= XiPisi = Y NiyPiyi + D

1€l i1#k

= Y APuinPii + | Pri+ Y PrinDini
11,527k 17k

= Z Ny Digin—y ** " Diyi

i1, in 7k

+ | Pei + Z PkirPiyi + 0+ Z Pkin_y " Pigiy Piyi
i17£k i1, in—17k

Hence we obtain
Ai = P (X1 =iand o > 1)+ P (Xo =i and of, > 2)
+- 4+ Pp(X,=iand op >n) .
Letting n — oo,

Ai 2 Eg Z 1{Xn:i,n<ok} = Eg Z 1{Xn=i} :

n=1 1<n<oy,
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On the other hand, we have A\ = 1. So we rewrite the right-hand-side as

following
ANizEp Y lix,_y, foralliel.

0s<n<og
In right-hand-side, the sum of indicator functions serves to count the number
of times n at which X,, = i before the first passage time oy, it is exactly the

expected time spent in i between visits to k. We give it a notation:

vWi=Er D Ly
0<n<og

Obviously, *y,’j = 1. Next, we will check if v* = (’yf)l ¢ Is a invariant measure
for P.

Theorem 1.22. Suppose k is recurrent. Then v* = (%k) is an invariant

el
measure for P.

Remark. Why is this true? This is called the “cycle trick”. 'yf is the
expected number of visits to ¢ in {0,---, 0, — 1}. Multiplying by P moves
us forward one unit in time so (y*P); is the expected number of visits to i
in {1,---,0%}. We need the condition k is recurrent, then X,, = Xy = k,

it follows that v*P = ~%.

0 Ok

Figure 1.5: cycle trick
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Proof. For any j € I,

or—1 00
Do =) P Y =iy = D D piPe(Xn =i, n < 0y)
el i€l n=0 iel n=0
00
= Zzpk(Xn =1, Xpr1=J, n < Uk)
i€l n=0
00 00
=Y Pu(Xpg1 =j, n<ox) =Y Pr(Xp =7, n <o)
n=0 n=1

Ok
=Ex ) 1=y
n=1

Since k is recurrent, under P, we have o, < oo, then Xo = X, = k. So we

have
op—1 o
Z Lix,=jy = Z lix,=j}, Pr-as.
n=0 n=1
So we get Y Vipij = ny’?, in other words, 7P = ~*. =

Remark. Without the condition that k is recurrent, we only have

or—1 ok
D Lxamit = 2 Lxami} + Lixoms, o=oc}-
n=0 n=1

k

So in this case, ¥" is not always invariant .

Now we have a sufficient condition for the existence of invariant measure.

Corollary 1.23. If Markov chain has a recurrent state, then invaiant mea-

sures exist.
Remark. The ezistence of an invariant measure does not guarantee recur-
rence, even if the chain is irreducible. For a counterexample,

9 ExamMmpPLE 1.26. Consider the simple symmetric random walk on Z3, which
is transient by Example 1.17, but has an invariant measure 7 given by m; = 1

for all <.
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A sufficient condition for uniqueness of invariant measures

Let k € I be recurrent and C' is the communicating class containing k.
Then C is closed, so there must be v¥ = 0 for all i ¢ C. Hence (7¥);cc is
invariant for P|c, and P|¢ is irreducible. So if I has two distinct recurrent
class, the invariant measures for P is not unique. Therefore, now we only

need to discuss the case that P is irreducible and recurrent.

First, we point that the invariant measures for an irreducible Markov

chain has an important property:

Lemma 1.24. Let P be irreducible. If A is an invariant measure for P,
then A =0, or 0 < A < oo. Paricularly, if w is an invariant distribution for

P, then m; > 0 for all i.

Proof. Let X is a invariant measure for P. If there exists some ¢ € I such that
A; > 0, for any j € I, pick n satisfying pz(?) > 0,then \; > /\ipl(;) > 0. O
Now, we give a sufficient condition for the uniqueness of invariant mea-

sures:

Theorem 1.25. Let P be irreducible and recurrent. Let A be an invariant
measure for P with A\, = 1 for some k € I, then A = v*. In other words, P

has an unique invariant measures up to scalar multiples.

Proof. We have proved A > 4*. Since P is recurrent, v is invariant by
Theorem 1.22. So it = A —~* is also an invariant measure for P. Since P is

irreducible, by Lemma 1.24, since pj, = 0 we konw 1 = 0, so A = v*. O

Remark. When [ has only one recurrent class, but is not irreducible, the

invariant measure may be not unique up to scalar mutiples. For an example,

¥ ExAampPLE 1.27. Consider the chain on ZU {oco}. Let p; ;41 =1 for i € Z,

and , and pooso = 1. Then P is transient, and 1., 17 both are invariant.
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Corollary 1.26. Let P be irreducible and recurrent. Then if P has an

invariant distribution, it must be unique.

¥ ExaMmpPLE 1.28. Consider the asymmetric random walk on Z with tran-
sition probabilities p;;—1 = ¢ < p = p;;+1 In components the invariant

measure equation AP = A\ reads
Ai = Aic1p + Ait1q
This is a recurrence relation for A with general solution
A=A+ B(%’)i

So, in this case, there is a two-parameter family of invariant measures

uniqueness up to scalar multiples does not hold.

1.5.3 Existence and uniqueness of invariant distributions

Obviously, if P has a invariant measures A and A :=»_._; \; < co. Then

let

el

m:% forallie I.

Then 7 is an invariant distribution for P. Note that

D=2 E D Lxe=p=Ei Y Y lx,—j =Ei(o)

J€eI jel 0<n<o; 0<n<o; jel

is exactly the expected return time to ¢ when startingfrom ¢, and we

give it a notation

m; = E; (0;) = Z’y}’ .
jel

Now, it’s natural to introduce the following definition :

Definition 1.4. We say a state ¢ is positive recurrent if m; < oo, and
a recurrent state which fails to have this stronger property is called null

recurrent.
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Thus, if I has a positive recurrent i, by normalizing 7°, we get an invari-
ant distribution m = % . Let C be the communicating class containing i,
which is closed, then ), ~m = 1, and (7;);cc is invariant for irreducible

transition matrix P|c. Thus we focus on the case that P is irreducible first.

The next theorem says that positive recurrence is a class property. And
an irreducible chain has invariant distribution < it has unique invariant

distribution < it is positive recurrent.

Theorem 1.27. Let P be irreducible. Then the following are equivalent:
(i) every state is positive recurrent.

(ii) some state i is positive recurrent.

(iii) P has an invariant distribution.

(iv) P has an unique invariant distribution w and m; = m% foralli e 1.

Proof. 1 = 2 is obvious.

2 = 3. If i is positive recurrent, so P is recurrent. By Thoerem 1.22, ~°

Zvjzmi<oo.

jel

is then invariant. But

Som = m%_'yi defines an invariant distribution for P.
3 = 1. Take any state k, Since P is irreducible and ), ; m; = 1 we have
m > 0 by Lemma 1.24. Hence 7, > 0. Set A = %W, then A is invariant with
A: = 1. By Theorem 1.25, v¥ < \, so
my = Z Y < — = —< X
- ; Tk Tk
i€l el
and k is positive recurrent.
3 < 4. First, 4 = 3 is obvious. Second, we prove 3 = 4. Since 3 implies

1, we konw P is recurrent, so the invariant distribution must be unique.
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At the same time, assume 7 is a invariant distribution, from Theorem 1.25,
1 . _ .k — k _ i o 1
™ =7" forall k € I. Therefore my = ;v =D ;e 7= = 7, We have

Wk:m%cforallkef. ]

Now we can give a necessary and sufficient condition for the existence

and uniqueness of invariant distributions.

Theorem 1.28. (X,,),>0 be Markov chian on I with transition matrix P.

(i) P has invariant distributions if and only if I has a positive recurrent

class. In this case, let w one invariant distributions, then m; = #

for all i € I, where [i] is the communicating class containg i.

(ii) P has unique invariant distribution, if and only if I has unique positive
recurrent class. In this case, let m the invariant distributions, and C' is
the unique positive recurrrent class. Then m; = m% for all i € C, and
m; =0 for all i € I\C.

¥ ExAMPLE 1.29 (Simple symmetric random walk on Z). The simple sym-
metric random walk on Z is clearly irreducible and, by Example 1.17 it is

also recurrent. Consider the measure \; = 1 for all i € Z. Then
1 1
Ai = 5 Aim1 5 A

so A is invariant. Now Theorem 1.25 forces any invariant measure to be a
scalar multiple of A. Since ) ., A\; = oo, there can be no invariant distri-

bution and the walk is therefore null recurrent, by Theorem 1.27.

¥ ExAMPLE 1.30 (Success-run chain). Consider a success-run chain on N,

whose transition probabilities are given by
Diit1 =i >0, po=¢=1—-p;>0Vi=>0.
Note that For any n > 1,
Po(oo >n) =po-- pn-1-
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Thus, the chian is recurrent if and only if p = [[?2,p; = 0. On the other

hand, we compute that
oo
Eo(00) =1+ Y po--Pn-1-
n=1

o If Eg(op) = 00, the chain is mull recurrent.

o If Eg(0p) < o0, the chain is positive recurrent.

EXERCISE

¥ EXERCISE 1.31. Show that Any Markov chian on finite space I has a

invariant distribution.

9 EXERCISE 1.32. Let P be a stochastic matrix on a finite set I. Show that a
distribution 7 is invariant for P if and only if 7(I — P+ A) = a, where A =
(asj:4,j €I) withaj; = 1foralliand j, and a = (a;:i € I) witha; =
1 for all 4. Deduce that if P is irreducible then I — P 4 A is invertible. Note
that this enables one to compute the invariant distribution by any standard

method of inverting a matrix.

9 EXERCISE 1.33. Prove that for any ¢,j € I,

]P)i(O'j < UZ‘)
]P)j(O'i < (fj)

%

Y=
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1.6 Time reversal and detailed balance condition

For Markov chains, the past and future are independent given the present.
This property is symmetrical in time and suggests looking at Markov chains
with time running backwards. On the other hand, convergence to equilib-
rium (see Theorem 1.39 ) shows behaviour which is asymmetrical in time: a
highly organised state such as a point mass decays to a disorganised one, the
invariant distribution. This is an example of entropy increasing. It suggests

that if we want complete time-symmetry we must begin in equilibrium.

We want to show that a Markov chain in equilibrium, run backwards,
is again a Markov chain (the transition matrix may however be different).
When discussing the time revarsal, without loss of genereality, we assume
P is irreducible, since all the mass is concentrated at the closed positive

recurrent classes when the chain in equilibrium.

Theorem 1.29. Let P be irreducible and have an invariant distribution
7. Suppose that (Xp)yc,<y is Markov(w, P) and set Y, = Xy_y. Then
(Ya)ocnen is Markov(r, P), where P = (Dij); jer is given by

TiPij

T

ﬁji: foralli,jel.

and P is also irreducible with invariant distribution 7.
Proof. We need to calculate the conditional probability. For any 0 <n < N,
P(Yot1=J|Yn=19Yn1=tpn_1, -, Yo =10)
=P (Xn_(nt1) =J | XN-n =4 XN-nt1 = in-1,-- , XN =)

_ . Tipii
:P(XN—(n+1):]‘XN—n:Z)= ;AU'
J

This shows (Y5,)o<n<n is @ Markov chain with the indicated transition prob-

ability. It’s easy to check = is invariant for P. O

The chain (Y7,)o<, < is called the time-reversal of (X)), We

say that (Xy,), - is reversible if, for all N > 1, (Xn_n)o<, < is also Markov
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(A, P), which is equilivant to
ﬂ'ipij = TI'jpji, y for all i,j .

Definition 1.5. A stochastic matrix P and a measure A are said to be in

detailed balance if
)\ipij = )\jpjl', for all i,j .

A is called symmetric measure (BZARM &) and P is symmetrizable (7T
BLAR). In addition, if 7 is distribution, P and 7 in detailed balance, we say

7 is an reverable distribution for P.
Remark.

(i) Obviously, if P and A are in detailed balance,then X is invariant for
P. So when a solution A to the detailed balance equations exists, it
is often easier to find by the detailed balance equations than by the
equation A = AP.

(ii) Let P be an irreducible stochastic matrix and 7 is the invariant dis-
tribution. Let (Xp), -, be Markov(m, P). (Xp),, is reversible if and

only if P and 7 are in detailed balance.

Theorem 1.30 (Kolmogorov cycle condition). P is irreducible and has
stationary distribution w. Then 7 is reverable if and only if the cycle condi-

tion is satisfied: given any cycle of states ig, i1, - ,in = g, we have
Digir *** Pin—rin = Pinin_1 """ Dirio -
Proof. Necessity : Detailed balance implies
TioPigir * " * Pin—1in = TinDinin_1 """ Pirio -

Since ¢, = 19, and m;, > 0, the cycle condition holds.

43



Sufficiency : Suppose that the cycle condition holds. Let ¢ € I and set
Ai = 1. For j # iin I let i = ig,--+ ,ix = j be a path from i to j with
Din_1,in > 0for 1 <n <k (and hence p;, 5, , >0for 1 <n < k). Let
)\j _ Pigi1 " Pig_1,ix '
Pigig—1 " " Piio
The first step is to show that A; is well defined, i.e., is independent of
the path chosen. Let lg = 4,---,l,, = j be another path from ¢ to j with

Ply_1,0, > 0for 1 <n < m (and hence py,, > (0 for 1 <n < m). Combine

ln—l

these to get a loop that begins and ends at ¢. Thus, by cycle condition

Pio,ir " Pig—1,06Plimlm—1 """ Pli,lo = Ploli * " " Plyp—1lm Pigig—1 " " Pixjio

Which means that

Digyiy " Pig_1,is  Plodi " Plin—1lm
Pigjir—1 " Pirsio  Plmlm—1 """ Plilo

This shows that the definition is independent of the path chosen. Obciously,
A and P are in detailed balance. Since P is irreducible, has a invariant
distribution 7, A is a scalar mutipile of 7. Then 7 and P are in detailed

balance, so 7 is reverable. ]
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1.7 Long-run behavior of irreducible chains (I):

Ergodic theorems

Ergodic theorems concern the limiting behaviour of averages over time.
We shall prove a theorem which identifies for Markov chains the long-run
proportion of time spent in each state. An essential tool is the following
ergodic theorem for independent random variables which is a version of the

strong law of large numbers.

Theorem (Strong law of large numbers). Let {£,} be a sequence of
independent, identically distributed, random variables with £, exists. Then
as n — oo,

Gt +& — E& as.
n

We denote by V;(n) the number of visits to i before n,

n—1
Vi(n) = lix,—y
k=0

Then Vifl") can be interpreted as the proportion of time before n spent in
state 1., or the average number of times the chian appears at state i . The
following result gives the long-run proportion of time spent by a Markov

chain in each state.

Theorem 1.31 (Ergodic theorem I). (X,,), -, is Markov(\, P) and P is

irreducible. Then as n — oo,

» 1
Vi) 1 pas (1.11)
n m;

where m; = E; (0;) is the expected return time to state i.

Proof. If P is transient, then, with probability 1, the total number V; of

visits to 7 is finite, so




Suppose then that P is recurrent. Fix a state i, we have P(o; < o0o) = 1.
So (Xo;4+n)pso 18 Markov (d;, P) and independent of (Xo,- -+, X,,) by the
strong Markov property. The long-run proportion of time spent in ¢ is the
same for (Xo,4n), >0 and (Xn), 5, so it suffices to consider the case A = 4.
Write Ulm for the length of the r th excursion to ¢, as in Section 1.4. By
O @

VA

pendent and identically distributed with E; (o;) = m;. Notw that

Corollary 1.12 | the non-negative random variables o are inde-

Uz‘(l) et O_i(Vi(n)*l) <n-—1
the left-hand side being the time of the last visit to i before n. Also

BCO RN 1) B

7 7

the left-hand side being the time of the first visit to 7 after n — 1. Hence

(Vi(n)=1) @, . (Vi(n))
o, +--+o0; <« M T +to;

(1.12)

O I
IP’i<U’ R —>miasn—>oo>:1

and, since P is recurrent P; (V;(n) — oo as n — oo) = 1. So, letting n — oo

in (1.12), we get P; (% —m; as n — oo) =1, which implies

Pz‘<vi7(ln)—>lasn%oo>—l. ]

my

Ergodic theorem implies the uniqueness of invariant distribution for ir-

reducible Markov chain.

Corollary 1.32. P is irreducible, 7 is an invariant distribution for P. Then

T = mi for all state 1.
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Proof. Note that for any state 4,

-1 n—1
Vi(n) 15 1 ,
E, zn :Ewn;ol{xk:i}:nkZ_OPw(Xk:Z):Wi

From ergodic theorem we konw V;(n)/n — m; Pr-a.s., by domainted limits

theorem we konw

n

n— 00 n—oo N m;

Thus Tri:m% . O

Corollary 1.33. (X;,),~ is Markov (), P), and P is irreducible, 7 is the

(unique) stationary distribution for P. Then we have

D

el

Vi(n)

—mi| = 0, P-a.s.

Proof. Given € > 0, choose J C [ finite so that ZigéJ m; < €. By Theorem

1.31 and Corollary 1.32, we have ), ; wa") — ;| — 0, P-a.s. And
Vi) | |Vl Vin)
3] LSS RS ol LU
iel ieJ i¢J
Note that
Vi(n) Vi(n)
_ ol <
D ek D Dk DL
i¢J i¢J i¢J
< H 2
igs i¢J
< Vi(n) — il + 2¢
, n
i€J
Vi(n)

el
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Remark. Denote M as all the distribution on I. For any u,v € M, define

1
dpy (p,v) = 52’“"_”"" (1.13)
i€l
and call it the total variation distance between p and v. It’s easy to

compute that

drv (1, v) = sup [u(A) — v(A)| = sup (1.14)

AcCI 0<fi<1,vi

Z(Mz’ - Vj)fi

So Corollary 1.33 means that the “statistics” distribution is convergent to

the stationary distribution in dpy, with probability one.

Back to the proof of Corollary 1.33, in fact we had got the following

conclusion:

Proposition 1.34. M as all the distribution on I. For any v,,u € M,
Vp, — p in dpy if and only if vp{i} — p{i} for alli € 1.

Now using Corollary 1.33, we have the following

Theorem 1.35 (Ergodic theorem II). (X,,), ., is Markov (A, P) is irre-
ducible and positive recurrent. w is the (unique) invariant distribution for

P. For any bounded function f : I — R we have

1n—1

HZf(Xk,) — /Ifdﬂ, P-a.s. (1.15)

k=0

Remark.  f &M EENIRS GG, AR 28 )7 € 3 A2 FE3, LN &Y B )
F3 (BRIR) FT =R

Proof. Note that

n—1 n—1 (n
I 0 = 2 S s = 3 )
k=0 k=0 i€l i€l
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and [; fdm =3",.; 7 f(i). Then we have

-1

1< Vi(n .
S WIESRY FEHES SISO
k=0 4 iel
Therefore, as n — oo,
1 n—1
Zf(Xk)—/fdw =0, P-as. O
"= I

Remark.

(i) In fact, for any f € L;i(m), this ergodic theorem holds.

The key idea here is that by breaking the path at the return times to
some state i, we get a sequence of i.i.d. random variables to which we

can apply the law of large numbers.

Proof. With out loss of generality, we assume f is nonnegative. Take
any state ¢ , let TZ-(O) =0 and Ti(k) = inf{n > Tz-(kfl) +1:X, =1} be
the k-th passage time.

T+ _y

Wi= > f(Xm), k>0

m:Ti(k)
By the strong Markov property, the random variables Wi, Wy, - - - are
i.i.d.. When computing EW;, we want to change the order of summa-

tion and integration, so we use Fubini theorem :

71 oi—1
EW; =E Z f(Xm):EiZf(Xm)
m:Ti(l) m=0
=B > Vi(o0) () = > EiVj(oi) F(j)
Jjel Jel
=) = D () = 2 Eaf < oo
= o L
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(i)

Using the law of large numbers for Wy, Ws, - - -, since Wy is finete a.s.,

then as r — 0o

1 — Tm ! 1
S me= Z F(x —>/fd7r, P-as.
r T JrI
k=0
For any n € Ny, let Vj(n) = r, then we have T(T Y<n-1< T( )
_ 1 -1
1 r—1 IR
=~ (X)) = Z fXm)+— >, f(X
m=0 m:Ti(T‘_l)

(1.16)
Using Theorem 1.31, as n — oo, we have

r—1_ Vin)-1

n n

—m;, P-a.s.

So as n — 0o, r — 00 , hence as n — oo

7Y

1
mz::o f(Xm)—>7ri/Ifd7r, P-a.s.

Thus the first term on RHS in (1.16) converges to E; f a.s.. We only

need to show that the second term converges to zero. Note that

1 n—1 1 T1<T) 1
—1
w2 JEm<g ) X ’
n n
m:Tyil) m= T r—1)
and using strong law of large number, as r — oo we have
W,_ -1Y._ -2Y,
1 T b T ’"2—>/fd7r—/fd7r_o P-a.s.
n n r—1 r—2
where Y, :== >, _; Wj. Now we get the desired result. O

For what reason this theorem is called “ergodic”? In fact , this theorem
has a close links with the following assertion: A C I*® and P,(X €
A) > 0, where X = (X,,)n>0. Let Yy = (X411 )n>0, then

Pr(Ikst V€A =1.
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This is “ergodic”. In fact, for any integrable f : I°*° — R, we have

1 n—1

- > f(Vi) = Ep, f(Y0).
k=0
¥ ExAMPLE 1.34. Assume (X,,) is irreducible with stationary distribution

m. We give a “genelization” of Theorem 1.31, denote

n—1

Vii(n) = ) 1Xp=i Xsa =}

m=0
Then with probability one
V .
71](771) — TiPij, as N — OO
To see this, let Yy, = (Xpn, Xnt1), then Yy, is a Markov chain on I := {(i, ) :
pij > 0}, and {7(; jy = mpij : (i,7) € I} is a stationary distribution. Then
Vij(n) = an;lo Ly, =(i,j)}- Using Theorem 1.31 we get the required result.

¥ ExampPLE 1.35 (Eestimating the transition probability). We consider now
the statistical problem of estimating an unknown recurrent transition matrix
P on the basis of observations of the corresponding Markov chain. Consider,
to begin, the case where we have n observations (Xo,- -, X,—1). The log-

likelihood function is given by
I(P) = log (AxoPxoX: *** PXn1Xa) = D Vij(n)logpy;
1,5€l
up to a constant independent of P, where V;;(n) is the number of transitions
from 7 to j. before time n, i.e.,

n—1

‘/'Lj(n) = Z 1{Xm:i,X7rL+1:j} :

m=0
A standard statistical procedure is to find the maximum likelihood es-

timate ﬁ, which is the choice of P maximizing [(P). Since P must satisfy
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the linear constraint Zj pij = 1 for each i, and p;; > 0. Using Lagrange

multipliers, we first try to maximize
l (P ) + Z )\ipz’j
1,J€1
and then choose (\; : 7 € I) to fit the constraints. Thus we find

Vij(n)
Vi(n) ’

Dij =

which is the proportion of jumps from ¢ which go to j.

We now turn to consider the consistency of this sort of estimate, that is
to say whether p;; — p;; with probability one as n — oco. To see this, we
only need to combine Theorem 1.31 and Example 1.34.

Another way is using the idea in remark of ergodic theorem. For any
k=1,2,---, let

=1 —i1.
R
Then Vij(n) = Sj_, €. where r = Y7 T, _iy = Vi(n) = 1(sy_s). Using
strong Markov property we konw {} are i.i.d. r.v’s with mean p;;. So, by

the strong law of large numbers, with probability one

22:1 gk
T

—)pij, as”r — o0

Note that when n — oo, V;(n) — oco. Thus

sz(n) _ 22:1 &k
Vi(n) r+1

— Dij, asn — o0

EXERCISE

9 EXERCISE 1.36. (Xp),,5q is Markov(A, P). Show that as n — oo,

Vi(n) R P(r; < o0)

n m;

, P-a.s.

where m; = E; (0;) is the expected return time to state i.
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1.8 Long-run behavior of irreducible chains (II):

transition probabilities p;

(i)
(i)

(iii)

(iv)

Convergence to equlibrium

In this section, we shall investigate the limiting behaviour of the n-step

Z(;L) as n — oo for an Markov chain.

(n)

If 7 doesn’t lead to 7, p;; =0 for all n.

(n)

If j is transient, by angl) < ané‘?) < 0o we have py;’ — 0 as

n — oQ.

If i — j and ¢, j is recurrent, then 4, j are communicating. In this case,

we can assume P is irreducible.

If i+ — j, ¢ is transient, j is recurrent. By first decomposition (see

Exercise 1.21) we have
- k k
) =S 1,
k=1

(n)
ij
(See Exercise 1.40) When discussing p

Then the limitting behaviour of p
(n)

behaviour of pj? .

can be determined by the limitting
™) e can
73

assume P is irreducible.

Therefore, in this section we always assume P is irreducible.

1.8.1 Periodicity

From ergodic theorem we konw that, if P is irreducible, then for any

state 7, we have

V; 1
i(n) — —, P;-a.s.
n mj

By Lebesgue domainted convergence theorem,

1n—1 ) 1
k

- p“ _ .

nkzo K m;
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(n)

(5]

1
m;

It’s natual to guess that if p
(n)
ij

null recurrent or transient, that is p

— as n — oo. If P is positive recurrent,

that is p;;” — 7, where 7 is the unique invariant distribution for P. If P is

(n)

i 0. Let’s see some examples first.

9 ExAMPLE 1.37. Let I be finite. Suppose for some i € I that

(n)

p;; = mjasn — oo forall j el

Then 7 = (7 : j € I) is an invariant distribution.

As we saw in Example 1.37, if the state-space is finite and if for some i
the limit exists for all j, then it must be an invariant distribution. But, as

the following example shows, the limit does not always exist.

¥ ExampLE 1.38. Consider the two-state chain with transition matrix

0 1
P—
10
Then P? = I, so P?™ = I and P?"t! = P for all n. Thus pgb) fails to

converge for all 1, j.

The behaviour of the chain in Example 1.38 is connected with its peri-

odicity.

Definition 1.6. An integer d is called the period of state 7 if d is the largest

common divisor of {n >0: pl(?) > O}. A state i is called aperiodic if 7 has

period one.

Lemma 1.36. If state ¢ has period d, then pgld)
(nd)

[

> 0 for sufficiently large

n,i.e., there is N; € Ny, for any n > N;, p > 0.

Proof. Note that d is the largest common divisor of {n > 0: p(n) > 0}, so

)

there exists some ny,--- ,ng such that pg”“) >0,and d = (ny,--- ,ng). By
Bezout identity, there exist some a_ --- ,a, € Z such that
ni ng
a—+-rap—=1.
"d "d
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n < (m+1)("F + -+ %), then
b=n—m(%+ - +2%)< (%44 %). We have

ng ni Nk
+ —l—d)—l—é(cud—l- ak:d)
= (m+a18) 7+ (m + ad) =
PR

d d
where by = m + a19,--- ,bp = m + aid. For sufficiently large n, we can let
b17"' 7bk P 17 S0
P = ) ) > 0. =

Lemma 1.37. periodicity is a class property, i.e., i communicates with j ,

then they have the same period.

Proof. Assume i has period d; and j has period d;. Since ¢ communicates

(m) > 0 and

with j, there exists some positive integers m and [ such that p; )

pﬁ? > 0. So when n is sufficiently large,

(m+nd;+1) S (m) (nd) (1)

i 2 Pij Pj; Py > 0.

Then we have d; | d;. Samely, d; | d;, So d; = d;. O

Therefore, we can say a ireducible Markov chain has period d, that means

every state has peeiod d.

Theorem 1.38. Let P be irreducible has period d. There is a partition
I=DyuUDiU...UDy_4 (117)
such that (setting Dygir = Dy )

(i) pz(»?) >0 only ifi € D, and j € D,4,, for some r.
(nd)
]

n, i.e., there is N;; € Ny such that for any n > N;; we have p

(ii) Foranyr =0,---d—1andi,j € D,, p;;’ > 0 for all sufficiently large
E;Ld) > 0.
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Remark. From (i) we can see chat P can write as block diagonal matrix as

the following form:

0 P’D07D1

0 0 Plp,.p,

0 0 P|Dd72Dd71
_P‘DdleO 0 0 i

From (ii), We can see that Dy, --- Dg_1 is all the communicating class of pe

also P4 can write as block diagonal matrix as the following form:

Pd’Do
Pd‘Dd—l

Proof. Take any state k fixed, and for any r =0,---d — 1,
D, ={j: Ins.t. pg;dw) >0} .

Obviously, Uf;éDT =1. Let 0 <ry #ry <d—1, We need to show that
(n1d+r1) (nod+ra)

D,, ND,, =@. If not, assume Py > 0 and Py > 0. Since P is
irreducible, there is some integer [ such that pglk) > (0. Then pﬁldwﬁl) >0
and p,i?fdwﬁl) >0. Sod|ri+landd|ro+1, thend| (ry —r2), ri = 72.

We arrive at a contradiction. Hence we have a partition.

Let ¢ € D, and p(ﬁ) > 0, we show that j € D,y,. Since i € D, there

ij
(n1d+r) (n1d+r+4n) > p](gl d+7‘)pl(;l)

exists nq such that Prj > 0, so py; > (0. Hence we

have j € Dyyp,.

Let 7,5 € D,, we prove that pg-ld)

pl(-,? > 0, p,(gldw) > 0 and p,(gﬂw) > 0. Then pﬁ-?ldwﬂ) > 0. We have

Z(;—i—nd—l—ngd-‘rr) >
> 0. Sop

> 0 for sufficiently large n. Assume

d | 741 because i has period d. Then for sufficiently large n, p
pgi)p,gzd)p,£?2d+r) > 0. Let 7+I+nod = nad, that is pE?dJrnSd) Z(;Ld)
for sufficiently large n. O

>0
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Theorem 1.38 ZAMRE —RXBFHIEZTREE R, A—F LRI T—
RBF. BiZRIA, A (i) R, f (i) TREZIBARIE d A B KEE
Ja HA.
¥ ExampLE 1.39. Figure 1.6 ¥ B K4 IAA 6, 122 3 F 65 2 i 2
Theorem 1.38 ] (i).

@ @\

@@’ @®

Figure 1.6: Counterexample

1.8.2 Limitting behavior of pl(?)

Here is the main result of this section. The method of proof, by coupling

two Markov chains, is ingenious.

Theorem 1.39 (Convergence to equilibrium). Let P be irreducible,
positive recurrent and aperiodic, 7 is the unique invariant distribution. Then
for alli,j €1,

(n) ,
pij0 = Tj, asmn — 00

In fact, suppose that (Xy),s, is Markov (A, P), where A is any initial dis-

tribution. Then Px, — m in total variance distance drvy, i.e.,

Z\]P’(Xn:j)—ﬂjlﬁo, asmn — 0o.
Jjel

Proof. We use a coupling argument. Let (Y3,),-, be Markov (m, P) and

independent of (Xy), -, . Fix a reference state b and set

T=inf{n>1:X, =Y, =0b}.
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Step 1. We show P(T' < oo) = 1. The process W,, = (X,,,Y,) is a
Markov chain on I x I with transition probabilities

P@k)(5,0) = PijPkl
and initial distribution
Wi k) = AiTk
since P is aperiodic, for all states i, j, k,[ we have

~(n) _ (n), (n)
Pl = Pig P >0

for all sufficiently large n; so P is irreducible. Also, P has an invariant
distribution given by
T(ik) = TiTk -
So P is positive recurrent. But 7 is the first passage time of W, to (b, b) so
P(T < 00) =1.
Step 2. Set

X,, ifn<rT.
Ly =
Y,, ifn>rT.

The diagram below illustrates the idea. It’s easy to show that (Zy), is
Markov (A, P).
Step 3. We have

P(Z,=j)=P(Xp=jandn<T)+P(Y,=jandn>T).

Hence
STIP (Xn =) =il = S [P (Zo = ) — P (Yn = j) |
jel jeI
=Y P(Xn=4n<7)-P(Yo=jn<7)|
Jel
<Y P(Xp=5jn<7)+P (Y, =4jn<7)
Jjel
=2P(n< 7).
and P(n < 7) — 0 as n — oo. O
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Figure 1.7: X,,, Y, and Z,

To understand this proof one should see what goes wrong when P is
not aperiodic. Consider the two-state chain of Example 1.38 which has
(1/2,1/2) as its unique invariant distribution. (X;),-, We start (X;),,~q
from 0 and (Yy,),,o with equal probability from 0 or 1. However, if Yy = 1,
then, because of periodicity, (Xn),~o and (¥3),,5o Will never meet, and the

proof fails.

Theorem 1.40. Let P be irreducible, aperiodic and null recurrent. Then
for alli,j €1,

pE;L)—H), asn — oo.

In fact, for any initial distribution A, suppose that (X,),,», is Markov (A, P),
then
P(X,=3j)—0, asn — oo.

Proof. Return to the coupling argument used in Theorem 1.39 , only now let
(Yn) >0 be Markov (p, P), where p is to be chosen later. Set W;, = (X5, Y3,).

As before, aperiodicity of (Xy),, o ensures irreducibility of (W), -
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If (Wy),,>0 is transient then, on taking u = A, we obtain
P(Xp =j)° =P (Wyn=(j,5)) =0

as required.
Now assume (W),), - is recurrent. Using the same argument in Theorem
=

1.39, we have P(7 < oo) = 1, we have that
[P (Xn = ) — P (Yo = )] = 0.
We exploit this convergence by taking p = AP¥ for k € N, so that
P (X = ) — P (Xns = )] = 0. (1.18)
(%) If we can prove that for any € > 0, there is some K = K, such that

min P (X =j)<e, foranynéeN,.
0She K (Xn+k = J) y +

Then from (1.18) we konw for the € given previously, there is N = N, > 0
such that for any n > N, there holds

Jmax [P(Xn =j) —P(Xnpr = J)| <e. (1.19)

We can see that P (X,, = j) < 2¢ for any n > N. So, P(X,, =j) — 0.
If (%) doesn’t hold, there is some ¢y > 0, for any positive integer K, there

exist a m = m(K) such that
P(Xpmik=J) =€, k=0,1,--- | K.
Note that for any k =0,1,2,--- K,
P (Xpik = J)Pj (05 > K — k)
=P(sup{n: X, =j,n<m+K}=m+k),

and
K

ZP(sup{n:Xn:j,ném—kK}zm—kk):1
k=0
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So we have

K
1= P(Xpnir=5)P;(0; > K — k)
k=0
K K
= €0 ZPj(O‘j >K—]{7):60 ZP]'(O'J' >k‘) .
k=0 k=0

Since K is arbitrary, we have Y~ (P; (0; > k) < oo. But P is null recurrent,

we have -
Ej (o) = ) _Pj(0; > k) = o0.
k=0
This is a contradiction. O

Combine Theorem 1.39 and Theorem 1.40, we have

Theorem 1.41. Let P be irreducible, aperiodic. Then for all i,j € I,

(n)

1
pij’ =, asn—>00. (1.20)

J

In fact, for any initial distribution \, suppose that (X;),~ is Markov (A, P),
then

We move on now to the cases that were excluded in the last theorem,
where (Xp,),,-ois periodic or transient or null recurrent. Here is a complete
description of limiting behaviour for irreducible chains. This generalizes
Theorem 1.39 in two respects since we require neither aperiodicity nor the

existence of an invariant distribution.

Theorem 1.42. Let P be irreducible of period d and let Dy, D1, ..., Dgy_1 be
the partition obtained in Theorem 1.38. For anyt € Dy andr =0,1,...,d—
1, and j € D, we have

d d
Z(;l )5 L asn - 0.

m;
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In fact, Let A be a distribution with ), p A; = 1. Suppose that (Xy),~
is Markov(\, P). Then for j € D,

d
P(Xngir =7) > —, asn — o0
my

Proof. We reduce to the aperiodic case. Set v = AP", by Theorem 1.38 we

Zyizl-

1€Cyr
Set Y, = Xnayr, then (Y5,),5¢ is Markov (V, Pd) and, by Theorem 1.38, P%

is irreducible and aperiodic on C,.. For j € C,. the expected return time of

have

(Yn),>0 to j is m;/d. By Theorem 1.41, in the aperiodic case, we ahve

. . d
P(Xnatr =J) =P =j) > —asn—o00

m;
so the theorem holds in general. O
Corollary 1.43. P is irreducible, then
d
limsupp™ = =, 1.21
msup Py = - (1.21)

where d is the period of P.

EXERCISE

¥ EXERCISE 1.40. Assume state i,j € I such that i is transient and j is

recurrent.

(i) j is aperiodic, show that

pl(.?)—>pi, as n — 00 .
e

J
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(ii) j has period d, show that

pg;zd—i-?" [Z f (kd+r) ] as T — 0o
mj

for any r =0,1,--- ,d — 1, where fi(;l) =Pi(o; =n).

Hint: Note that in Exercise 1.21 we proved that

3

pw Zf nk) forn>1
k=1

When j is apeiodic, for fixed k& we have pg.?fk)

domainted convergence theorem: Let p be a finite measure on N such that

(k) = flgg). For any n, let gn(k) = p§? " for k < n and = 0 for k > n,

g(k

)
gn < 1, by Lebesgue domainted convergence theorem:

(k) (n—k) (k) 1 Pij
Y me)pgj /gndu%/gdu Zfz) ==

m;

— 1/m;. Then use Lebesgue

= 1/m; is constant function, thus we have g, — g a.e. Note that
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Chapter 2

Continuous-time Markov

chains

2.1 Right Continuous random processes

Let I be a countable set with discrete topology, and B(I) is the Borel

algebra on I. A random vectors
X (Q,F) = (109, B(N)")); w = (Xo(w))ezo

is called a continuous-time random process with values in I. Equiv-
alently, a continuous-time random process is a family of random variables

X :Q — I for all t > 0. Sometimes, we need
X :(2x][0,00),F x B[0,0)) = R; (w,t) — Xi(w)

is measurable.

We are going to consider ways in which we might specify the proba-
bilistic behaviour (or law ) of (X¢);5,- These should enable us to find,
at least in principle, any probability connected with the process, such as

P (X; =i for some t). There are subtleties in this problem not present in
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the discrete-time case. They arise because, for a countable disjoint union

P (UAH> => P(4,).
n n
whereas for an uncountable union U;>0A; there is no such rule. But
{X; =i for some t € [0,00)} = U{Xt =1}
t=0

To avoid these subtleties as far as possible we shall restrict our attention to

processes (X¢);5, which are right-continuous.

Definition 2.1. A continuous-time random process (X),5, with values in
I is called right-continuous if for any fixed w € €2, [0,00) — I}t — Xy(w)

is right-continuous, where I equipped with discrete topology.

Clearly, (Xi),5( is right-continuous means that, for each w € € and

t > 0, there exists § > 0, depending on w and ¢, such that
Xs(w) = Xi(w), forallseltt+d]. (2.1)
For example, we can now deduce that

{X; =i for some t € [0,00)} = U{Xt =i} = U {X,=i}.

t=0 ’V‘EQ+

and following this we can compute the probability of { X; = i for some ¢ € [0, 00)}.

Three possibilities for the sorts of path Every path ¢ — X;(w) of a
right-continuous process must remain constant for a while in each new state,

so there are three possibilities for the sorts of path we get.

In the first case the path makes infinitely many jumps, but only finitely

many in any interval [0, ¢].
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Xi(w)

: — : :
Jo=0 J:l Jz J3 J4 j5 t
s, S, S, s, Ss ¢ Sg

The second case is where the path makes finitely many jumps and then

becomes stuck in some state forever:

Xi(w)

L J

P S

Jo=0

Jy Jo t

51

So

In the third case the process makes infinitely many jumps in a finite

interval; this is illustrated below. In this case, after the explosion time ( the

process starts up again; it may explode again, maybe infinitely often, or it

may not.
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Xi(w)

|

I

1

Jump times, holding times We call Jo, J1,- - the jump times of (Xt),-
and S1, Sg,- -+ the holding times. They are obtained from (X;),,, by

J():O, Jn_t,_l:lnf{t}JnXt?éXJn}

forn=0,1,--- , where inf & = 0o, and, forn =1,2,---

00 otherwise.

Sn:{ Ty — Juoy  if Jyq < 00

Note that right-continuity forces S,, > 0 for all n. If J,11 = oo for some n,

we define Xoo = X, the final value, otherwise X is undefined.

Explosion time, embedded chain The (first) explosion time ( is defined
by

¢ =sup J, :iSn
n n=1

The discrete-time process (Y3),5o given by Y, = X, is called the jump

process of (Xi);5q, or the embedded chain (jump chain) if it is a discrete-
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time Markov chain. This is simply the sequence of values taken by (Xi),

up to explosion.

Minimal process We shall not consider what happens to a process after
explosion. So it is convenient to adjoin to I a new state, oo (or d) say, and
require that X; = oo (or Xy = 0 ) if t > (. Any process satisfying this
requirement is called minimal. The terminology “minimal” does not refer
to the state of the process but to the interval of time over which the process

is active.

Note that a minimal process may be reconstructed from its holding times
and jump process. Thus by specifying the joint distribution of Sy, Ss, -
and (Y3),o we have another “countable’ specification of the probabilistic

behaviour of (X;),,. For example,
{X; =i for some t € [0,00)} = {Y;, =i for some n € N} .

Consider now the method of describing a minimal right-cont-continuous
process (Xt ), via its jump process (Y3,),,5o and holding times (Sy,),,-, - Let
us take

F=0(X¢:t>0)andG=0 ((Yn)n>0 ,(Sn)ps1) -

Firstly, for all i € T
{(Xi=iy=J M= n{h<t<Jun}eg,
n=0

which deduces that F C G. Intuitively, G C F, but there’s a little bit of

troubles to prove it rigorously.

Denote by F; the o-algebra generated by {X,:s < t}. We say that a
random variable 7" with values in [0, o] is a stopping time of (X;), if

{T <t} € F, for all t > 0. Note that this certainly implies

1
{T<t}:U{T<t—n}€]:t for all ¢ > 0.
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We define for stopping times T,
Fr={AeF:An{T <t} e Fforallt>0}.

This turns out to be the correct way to make precise the notion of sets
which “depend only on {X; : ¢t < T}”, somwtimes we use ‘c({X; : t < T})
to indicate this.

Lemma 2.1. Let T be a stopping time of (Xt),~o. Then Xr is Fp-measurable.

Proof. In order to show Xp is Fp-measurable, it suffices to show that for
each i € I,
{Xr=i}n{T <t} € F.

Clearly, { X7 =i} N{T < t} € F;, so we need to prove
{XT:i}ﬂ{T<t}Eft.

Since (X¢); is right-continuous, on {T" < ¢} there exists an (random) N > 0
such that, for all n > N, there exists k > 1,

k—1 k
<T<—<t and X, = Xrp.
on on i
Hence
{Xr=i}n{T < t}
0o oo [2™t]
k—1 k
UﬂU{XQLn ’L}ﬂ{ on \T<2n}€ft
N=0n=N k=1
so X7 is Fp-measurable. ]

Lemma 2.2. Let S and T' be stopping times of (X),, . Then
{§>TteFr, {S<T}eFr.
Proof. We have

{(S>Tyn{T<tt= |J {T<s}n{S>s}eF,

SEQ4,s<t

so{S>T}e€ Fr,and so {S<T} e Fr. O
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Lemma 2.3. For eachn > 0, the jump time J, is a stopping time of (Xt)t>0.

Proof. Obviously, Jy = 0 is a stopping time. Assume inductively that J, is
a stopping time. Then for all ¢ > 0,

{(Ta<tyt= |J {h<sin{X.#X,}eR

SEQ4,s<t
{(Tn=tt= |J {h<st () (Xe=X,}eFR.
s€Q,s<t s'eQy
s<s'<t
S0 Jyp41 is a stopping time and the induction proceeds. ]

Now, by the three lemmas above, we (Y3,),,5( and (Sn),,», are F-measurable.
Thus G C F. Therefore we get F = G, i.e.,

o (Xt :t20) =0 ((Yn)psos (Sn)ps1) - (2.2)
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2.2 Poisson processes

Poisson processes are some of the simplest examples of continuous-time
Markov chains. We shall also see that they may serve as building blocks
for the most general continuous-time Markov chain. Moreover, a Poisson
process is the natural probabilistic model for any uncoordinated stream
ofdiscrete events in continuous time. So we shall study Poisson processes
first, both as a gentle warm-up for the general theory and because they are
useful in themselves. We shall begin with a definition in terms of jump chain

and holding times.

Definition 2.2. A right-continuous process (Vi ), with valuesin {0,1,2,---}
is a Poisson process of rate A\, where A € (0,00), if its holding times
S1,59,--- are independent exponential random variables of parameter A

and its jump chain is given by Y, = n.

Remark. Given the distribution of the jump times and jump chian, the law

of (Nt);5 is uniquely determined.

Here is the diagram of the Poisson process,

A A A A

Figure 2.1: Poisson process of rate A

and the associated Q-matrix is given by

-2 A

A A
Q= L (2:3)

Using the strong law of large numbers, we have P (J, — o0) = 1, so there is

no explosion in Poisson process.
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Why is the process defined above called “Poisson”?
Theorem 2.4. For each t > 0, N; has a Poisson(\t) distribution.
Proof. For any n € N,
t
PNt =n) =P(Jp, <t < Jpt1) = / 7, ()P (Sp+1 >t —s)ds
0

Note that J,, = S; + - -- S, has a gamma(n, \) distribution, that is

by n—1
ef)\s' ( S)

fJn (S) =A (’I’l — 1)| 1{S>0} .
So we have
P(N / )\e_ASL e M=9) s
(n—1)!
_ e—/\t/ n1gg _ o- )\t()‘t)n,
(n - 1)! 0 n!
which proves the desired result. O

Construct a Poisson process A simple way to construct a Poisson pro-
cess of rate A is to take a sequence Si,.S9,- - of independent exponential

random Variables of parameter A, to set Jy =0, J, = 51 + -+ + 5,, then

set
Ne=n if J,<t< Jn+1 (24)
or equivalently
oo
Ny=> lyj,<y forallt>0. (2.5)
n=1

The following diagram illustrates a typical path, and it’s easy to check that

{Jn} is exactly the jump times of the right-continuous process (N¢):>o.
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Xy

5 e e

P PO TS U U U UOUOt SUUO0 UOUUURTRPRTRTT — b

) S S _

ol U S o

| R ‘ Grrnednn s s AP

0 - A
Jo=0 J1 Jo J3 JoJs t
S Se S Sy TS L S

Figure 2.2: Construct a Poisson process

Markov property We now show how the memoryless property of the

exponential holding times, leads to a memoryless property of the Poisson

process.

Theorem 2.5 (Markov property). Let (Nt),», be a Poisson process of

rate A. Then, for any s > 0, (Ng1¢ — Ns)t>0 is also a Poisson process of rate

A, independent of {Ny : t < s}.

Proof. Let ]\~ft = Ny, — N, for all £ > 0. Clearly, (Nt)t>0 is a integer valued,

increasing, right-continuous process starting at 0. Its jump times are given
by jo =0and

Jn = JN@)41 — s forn>=1.

Hence the holding times are

§1:JN(5)+1_3 and gn:SN(s)+n forn > 2.
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It suffices to show that {S,} is sequence of i.i.d r.v.s with exponential dis-

tribution of parameter A, and independent of (Ny)o<i<s-

For any real numbers t1,--- ,t, € (0,00), 0 < 51 < -+ < 8, < 8, and

non-negative integers 0 < k1 < -+ < ko1 < bk =k, o
P (81>t 8 > tui N(s) = ks N(s1) = o+ N(sm) = hin )
=P (Jpgp1 — 5> t1, S > 5,2 <0 <05 Jp < sy Jiy <55 < Ty, 1 <j<m)
we denote by A the event {Ji; < s; < Jy,; 41,1 < j < m}, then
P (81>t S0 > ta N(s) = ks N(s1) = -+, Nis) = hin )
= e M2t ttn) S P({S) 1 >t + s — T} N {Jk < s} NA),
and let A" = {21 +---ap; <85 <@+ Tp;11,1 < j <m},
P({Skt1 >t1+s— T N{Jp < smtNA)
= / P(Sk+1 >t +8—ij)1{zm].<sm}1,4/ dzy - -dz,
Ly &m >0
by memoryless property of the exponential distributions,

= / P(Skt1 > t1)P(Sgs1 > s — ij)l{zxjgsm}l,q/ dzy - - dz,
1, 5 >0

= M /1 » >0P(Sk+1 > 5 — Zl‘j)l{zxjgsm}lA’ dzy - -dz,,
=e M P({Spy1 >5— N {Jp <spmtNA)
=e M P{J <s$m<s<Jpp1}NA) .
Thus we get
P <§1 > t1, S >t N(s) =k, N(s1) = k1, -+, N(sm) = km>

— e Mtrttad ) o P({Jk < sm <5< Jpy1} NA),

= e MbtlatFtn)  P(N(s) =k, N(s1) = k1, , N(sm) = k) .

®We let km—1 < km = k, in ordet that we can write {N(s) = k,N(s1) =
ki,-o- N(sm) = km} as {Jrp1 > s} N{Jx; < 85 < Jr;41,1 < j < m} and the sec-

ond event is in o(S1,-- -, Sk).
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Thus {gn} is sequence of i.i.d r.v/s with exponential distribution of param-

eter A\, and independent of {N; : t < s}. O

In fact, we shall see in Section 7?7 by an argument in essentially the same

spirit that the result also holds with s replaced by any stopping time 7' of
(Nt>t>o~

Theorem (Strong Markov property). Let (N;),., be a Poisson process
of rate A and let T be a stopping time of (Nt);»,. Then, conditional on
T < o0,

(N7t — N7) 120

is also a Poisson process of rate A, independent of (N;) .

Alternative definitions We come to the key result for the Poisson pro-
cess, which gives two conditions equivalent to the jump chain/holding time
characterization which we took as our original definition. Thus we have

three alternative definitions of the same process.

Theorem 2.6. Let (Nt)t20 be an increasing, right-continuous, integer-valued
process starting from 0. Let A € (0, 00), then the following three conditions

are equivalent:

(i) (jump chain/holding time definition) the holding times Sy, S, ... of
(Nt); are independent exponential random Variables of parameter A

and the jump chain is given by Y,, = n for all n;

(ii) (transition probability definition) (N), has stationary independent

increments and, for each t > 0, Ny has Poisson(At) distribution.

(iii) ~ (infinitesimal definition) (N¢),, has independent increments and, as

h | 0, uniformly in t, ©®

P (Npyn — Ny = 0) =1 — A+ o(h), P(Neon — Ny = 1) = A+ o(h) .

®Uniformly in ¢ implies “ stationary increments ”.
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If (N¢),sq satisfies any of these conditions then it is called a Poisson

process of rate \.

Proof. (i) < (ii). If (i) holds, then, by the Markov property, Theorem 2.5,
(Nt)t>0 has stationary independent increments. By Theorem 2.4, we have
proved (ii). If (ii) holds, the finite-dimensional distributions of (V)5 is
uniquely determined, and hence the distribution of jump chain and holding

times.

(ii) < (iii). If (ii) holds, then for any ¢, h > 0,

P(Xjon—Xe=0)=P(X,=0)=eM=1-A+o0(h)
P(Xppp—X;=1)=P(Xp =1) = Mhe M = A+ o(h).

which implies (iii). To show the other hand, if (iii) holds, then, for i > 2,
we have P (X p — Xy =) = o(h) as h | 0, uniformly in ¢. Set pg;(t) =
P(X; =j). Then, for j =1,2,...,
J
poj(t+h) =P (Xppp = j) = ZP(Xt-‘rh - Xy =) P(Xy =7 —1)
i=0

= (1 — \h + O(h))p()j(t) + ()\h + 0(h))p0j71(t) + O(h) s
w Po;(t + h) — po;(t)
h

since this estimate is uniform in ¢t we can put t = s — h to obtain for all

s=h,

= —Apo;(t) + Apoj—1(t) +o(1).

poj(s) — poj(s —h)
h

= —Apo;j(s — h) + Apoj—1(s — h) + o(1)

Now let h | 0 to see that pg;(t) is first continuous and then differentiable

and satisfies the differential equation

Po; () = —Apo;(t) + Apoj—1(t).

By a simpler argument we also find
Poo(t) = —Apoo(t) -
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Since Xp = 0 we have initial conditions
poo(0) =1, po;(0) =0 forj>1.

This system of equations has a unique solution given by

() ,
st = e o> 0.
Hence N; has a Poisson(At) distribution. If (Xi),5, satisfies (iii), then
(Xst+t — Xs)50 satisfies (iii), so the above argument shows N5 — N has

has a Poisson(At) distribution for any s, which implies (ii). O

The differential equations which appeared in the proof are really the
forward equations for the Poisson process. To make this clear, consider the
possibility of starting the process from ¢ at time 0, writing IP; as a reminder,
and set

pi(t) = Pi (Xi = j)
Then, by spatial homogeneity p;;(t) = poj—i(t), and we could rewrite the

differential equations as
Pio(t) = —Apio(t) pio(0) = dio
Pij(t) = Apij—1(t) = Apij(t), piz(0) = by

or, in matrix form, for ) as above,
Pl(t) = P(t)Q, P(0)=1.

Theorem 2.6 contains a great deal of information about the Poisson
process of rate A\. It can be useful when trying to decide whether a given
process is a Poisson process as it gives you three alternative conditions to
check, and it is likely that one will be easier to check than another. On
the other hand it can also be useful when answering a question about a
given Poisson process as this question may be more closely connected to
one definition than another. For example, you might like to consider the
difficulties in approaching the next result using the jump chain/holding time

definition.
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2.2.1 Compound Poisson Processes

Suppose that between 12: 00 and 1: 00 cars arrive at a fast food restu-
arant according to a Poisson process (IVi);>o with rate X\. Let Y;, be the
number of people in the n th vehicle which we assume to be i.i.d. and inde-
pendent o (IV;);>0. Having introduced the Y,,’s, it is natural to consider the

sum of the Y,,’s we have seen up to time ¢ :
St)y=Y1+---+ YN(t) (2.6)

where we set S(t) = 0 if N(t) = 0. In the motivating example, S(t) gives

the number of customers that have arrived up to time t.

Lemma 2.7. Let Y1,Y5,--- be i.id, N be an nonnegative integer valued

r.v. independent with {Y,} and, let S =Y; +---+ Yjy.
(i) IfE|Yi|,EN < oo, then ES = EN - EY;.
(i) IfEY? EN? < oo, then Var(S) = EN Var (Y;) 4+ Var(N) (EY;)?.

Remark. Why is this reasonable? The first of these is natural since if
N = n is nonrandom ES = EN - EYj, (i) then results by setting n = EN.
This fact is known as Wald’s equation. The formula in (ii) is more compli-
cated but it clearly has two of the necessary properties:

If N = n is nonrandom, Var(S) = n Var (Y;)

If Y; = c is nonrandom Var(S) = ¢? Var(N)
Combining these two observations, we see that EN Var (Y;) is the contribu-
tion to the variance from the variability of the Y;, while Var(N) (EY;)? is

the contribution from the variability of V.

Proof. Breaking things down according to the value of IV,

ES:iE[S]N:n]P(N:n)

n=0

=> nEY;P(N =n) =EN -EY
n=0
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For the second formula we note that when N =n,S = X7 +--- + X,, has
Var(S) = n Var (Y;) and hence,

E (S*IN =n) = nVar (Y;) + (nEY;)”
Computing as before we get

ES? = iE (S*|N =n) - P(N =n)
n=0

-y {n-Var (v) 4 n? (€)°} - PV = n)
n=0

= (EN) - Var (Y;) + EN? - (EY;)?
To compute the Variance now, we observe that
Var(S) = ES? — (ES)?
= (EN) - Var (Y;) + EN? - (EY;)” — (EN - EY;)?
= (EN) - Var (Y;) + Var(N) - (EY;)?

where in the last step we have used Var(N) = EN? — (EN)? to combine the

second and third terms. O

Corollary 2.8. For any t, ES(t) = Mt EY;, and Var S(t) = Mt EY?.

Proof. Note that in the special case of the Poisson, we have EN (t) = At and
Var N(t) = At, so the result follows. O

2.2.2 Thinning

We will use the discrete i.i.d r.v/s {Y,}, independent with (N¢)i>o to
split the Poisson process into several, where Y,, take values in a conutable
set 1. For given j € I, let N;(t) be the number of n < N(t) with ¥; = j,
that is

Ni(t) =Y Ly,cjmeny = O Ldnst.Yaus} (2.7)
n=1 n=1

The somewhat remarkable fact is
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Theorem 2.9. (N;(t))i>o is Poisson process with rate Ap;, where p; =
P(Y1 = j). Moreover, {N;(t)}er is independent.

Proof. To begin, we suppose that P (Y; =1) =p, P (Y; =2) = ¢, and p+q =
1, so there are only two Poisson processes to consider, namely, Ni(t) and

Ny(t). For 0 =ty <t; <--- <ty <ooandkj, mj € Nforl<j<n,
P(N1(t;) — Ni(tj-1) = kj, Na(t;) — Na(tj—1) =m;;1 < j <n)

=P(N(t;) = N(tj—1) = kj +my; § = k1 < j < n)

where

J
gj = Z 1{Ynzl} , and S5 = Z ki +m;.

8j—1<n<S; =1
Clearly, {{;} is independent r.v’s with Binomial(k; + m;, p) distribution,
respectively, and independent of {N(¢)}. Hence

=P(N(t;) = N(tj—1) =kj +m;;1 < j<n) xP(§=k;51<j<n)

=[] B(N(t)) = N(tj-1) = kj + mj) x P(& = k)

_ ﬁ oAM=t At — ti-)] ™k + mj)!pk]- my

=1 (k‘] + mj)' k:j‘mj'
— ﬁ e*)\p(tjftjfl) [Ap(tj — t]_l)]k] X ﬁ ef)\q(tjftj,l) [)\Q(t] — t]_l)]mj
N k! m;!

j=1 J j=1 J

Thus N;(t) is Poisson Process with rate Ap, Na(t) is Poisson Process with
rate A\g, and Ni(t), Na(t) are independent.

Using the same method, one can show that for Y3 = 1,---,m with
probability pi1,--- ,pm such that p; + --- p,, = 1, the theorem holds. Then

the general case follows. O

Remark. We say that {N(t)}:>0 is a (nonhomogeneous) Poisson process
with rate A(+), if N(0) =0, and
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o N(t) has independent increments and,
e N(t) — N(s) is Poisson with mean [? A(r)dr.

The thinning results generalizes easily to the nonhomogeneous case : Sup-
pose that in a Poisson process with rate \, we keep a point that lands at
time ¢ with probability p(t). Then the result is a nonhomogeneous Poisson

process with rate Ap(-).

¥ ExAMPLE 2.1. Ellen catches fish at times of a Poisson process with rate
2 per hour. 40% of the fish are salmon(f# ), while 60% of the fish are
trout (i f1). What is the probability she will catch exactly 1 salmon and 2
trout if she fishes for 2.5 hours?

The total number of fish she catches in 2.5 hours is Poisson with mean 5,
so the number of salmon and the number of trout are independent Poissons
with means 2 and 3. Thus the probability of interest is

21 2
e 2. 6_33— .
1! 2!
Further theory A Poisson point process on a measure space (S,S, 1) a
random mapping m : S — {0, 1,...} that for each w is a measure on S and
has the following property : if Ay, ..., A, are disjoint sets with p (4;) < oo,
then
m (A1), - ,m(Ay)
are independent and have Poisson distributions with means u(A;) . p is
called the intensity measure of the process.

If 11(S) < oo then it follows from Theorem 2.9 that we can construct m by
the following recipe: let X7, Xo,... be i.i.d. elements of S with distribution
v(-) = u(-)/p(S), let N be an independent Poisson random variable with
mean /(S), and let

m(A)=#{j<N:X;e€ A}, forall AeS.
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To extend the construction to infinite measure spaces, e.g. ,S = R4, S =
Borel sets, i = Lebesgue measure, divide the space up into disjoint sets of

finite measure and put independent Poisson processes on each set.

2.2.3 Superposition

Taking one Poisson process and splitting it into two or more by using
an i.i.d. sequence {Y,,} is called thinning. Going in the other direction and
adding up a lot of independent processes is called superposition. Since a
Poisson process can be split into independent Poisson processes, it should
not be too surprising that when the independent Poisson processes are put

together, the sum is Poisson with a rate equal to the sum of the rates.

Theorem 2.10. Suppose for j € I, (N;(t))i=o are independent Poisson
processes with rates \; > 0, respectively, and X =)

N(t) =Y Nj(t)

jel

el Aj < 00. Then

is a Poisson process with rate \.

Proof. Firstly, for 0 =ty < t; < ---t, < 0o, we have
N(ty) = N(tp1) = > Nj(ts) — Nj(tg—1), for j € I.
JeI
Clearly, {N(ty) — N(tx—1) : k =1,--- ,n} are independent and by Proposi-
tion 2.27, they are Poisson r.v.s, with parameter \(tx — tx_1), respectively.
It’s easy to see that for any w and ¢, there are finite many j € I, N;(t) > 0,
thus N(t) is right-continuous. O

2.2.4 Conditioning

Next we establish some relations between Poisson processes and the uni-
form distribution. Notice that the conclusions are independent of the rate of
the process considered. The results say in effect that the jumps of a Poisson

process are as randomly distributed as possible.
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Theorem 2.11. Let (Nt)t>0 be a Poisson process. Then, conditional on the

event {X; = n}, the jump times Jy,...,J, have joint density function
n!
J e, . tn) = = Lio<ti < <tn<t} (2.8)
Thus, conditional on {N; = n}, the jump times Ji,...,J, have the same

distribution as an ordered sample of size n from the uniform(0,t).

Proof. To compute the joint density, we need to find some f such that for
all A e B™,

P((Jl,...,Jn)EA’Nt:n):/f(tl,...,tn) dty...dt, .
A

First, we compute the joint density for (Jq,--- ,J,). Since the holding times

S1,...,Sp+1 have joint density function

n+l_—A(s1+...+sn
A € (51 +1) 1{81 ..... Sn+1>0} >

so the jump times Ji, ..., Jy4+1 have joint density function

n+1l _—\t 41
A € " 1{0<t1<...<tn+1} ;

hence
P((J1,..-5dn) € Aand Jp, <t < Jpga)
B P(X; =n)
A" exp{—At}
= 1 dty...dt,
()" /n! exp{—\t} /A {0<ti<...<tp<t}Uil
n!
= /A tfn ]‘{0<t1<"'<tn<t} dtl . dtn
as required. =

Corollary 2.12. If s <t and 0 < m < n, then

P(N(s) =m | N(t) = n) = (”) (;)m (1- ;)"‘m (2.9)

m

Or, conditional on N (t) = n, the distribution of N(s) is binomial(n, s/t).
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2.3 Birth processes

A birth process is a generalization of a Poisson process in which the
parameter A\ is allowed to depend on the current state of the process. The

data for a birth process consist of birth rates q; > 0 where j € N.
We begin with a definition in terms of jump chain and holding times.
A minimal right-continuous process (X¢);,, with values in {0,1,2,---} U

{o0} is a birth process of rates (Qj)jgo if, conditional on Xy = ¢, its

holding times Si, S92, -+ are independent exponential random variables of
parameters g;, g;+1,- - - , respectively, and its jump chain is given by Y, =
14 n.

The flow diagram and the Q-matrix is given by

qo q1 q2 q3
0 1 2 3 4
and
—qo 9o
-4 q1
Q= —q@2 Q2

Much of the theory associated with the Poisson process goes through
for birth processes with little change, except that some calculations can no

longer be made so explicitly.
Explosion of brith process The most interesting new phenomenon present

in birth processes is the possibility of explosion. For certain choices of birth

rates, a typical path will make infinitely many jumps in a finite time, as

84



shown in the following diagram. The convention of setting the process to

equal co after explosion is particularly appropriate for birth processes!

Xy

) RN NSNS O & S

51 : S . Sz S

In fact, Theorem 2.13 tells us exactly when explosion will occur.

Theorem 2.13. Let (X;), be a birth process of rates (g; : j > 0) starting

from 0.
(i) IfY 2, % < 00, then P(¢ < 00) = 1.
(i) If> 22, qu = oo, then P(¢ = 00) = 1.
Proof. Using Proposition 2.26. O

The proof of the Markov property for the Poisson process is easily adapted

to give the following generalization.
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Theorem 2.14 (Markov property). Let (X;),., be a birth process of
rates (gj : j = 0). Then, conditional on Xs = i, (Xs4t);5q is a birth process

of rates (gj : j > 0) starting from i and independent of (X, : s < s)

Proof. Let X, = X1 for each t > 0. Then (Xt)t;() is a right-continuous
process valued in {0,1,2,---} U {oo}. Denote (Jp)nso the jump times of
()A(:t)t>0 and

o)
N(t):=) 1<y, forallt>0.
n=1

Then jo =0 and

In = JIN(s)4n — 8, forn = 2.
The holding times of (X;);s0 is given by
Sp = IN(Gs)+1 = S ; §n = SN(s)4n, forn = 2.
Hence, on {N(s) =k} ={Jp < s < Jp11},
§1:Jk+1—s; §n:Sk+n, forn > 2,
and

k
_Xt:i_k"i_Zl{Jngt}, fort < s.

n=1
We show now that (X;);>0 is a birth process of rates (gj :j > 0)and

o(X;:t < s)isindependent of o(X;:t > 0) =0(S, :n>1),
First of all, it’s easy to show that for each A € o(X;:t < s),
P({Sy > t1, -, Sp >t} NAN{N(s) = k, X, = i})
=e Uil ..ottt P(NAN{N(s) = k, X, = i})
Then sum over k =0,1,2,---, and divide P(Xs = i), we get
P({Sy > t1, -, S, > to} NA|{X, =i})
=e Ul .o it P(A | {X, =1})
=Pi(S1 >t , S >t,) P(A]| Xs=1).

We have completed the proof. O
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We shall shortly prove a theorem on birth processes which generalizes
the key theorem on Poisson processes. First we must see what will replace
the Poisson probabilities. In Theorem 2.6 these arose as the unique solution
of a system of differential equations, which we showed were essentially the

forward equations. Now we can still write down the forward equation
P'(t)=Pt)Q, P0O)=1I
or, in components
Pio(t) = —pio(t)qo, pio(0) = dio
and, for j =1,2,---
Pii(t) = pij1(t)gi—1 — pij(t)gj, i (0) = by

Moreover, these equations still have a unique solution; it is just not as

explicit as before. For we must have
pio(t) = dipe” %"
which can be substituted in the equation
Pir(t) = pio(t)qo — pan(t)q1,  pir(0) = o

and this equation solved to give

¢

pir(t) = dine™ M + 5io/ goe ™%~ =) g
0

Now we can substitute for p;;(¢) in the next equation up the hierarchy and

find an explicit expression for p;2(t), and so on.

Theorem 2.15. Let (Xt), be an increasing, right-continuous process with
values in {0,1,2,--- }U{oo}. Let 0 < gj < oo for all j > 0. Then the following

three conditions are equivalent:
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(1)

(ii)

(iii)

(jump chain/holding time definition) conditional on Xy = i, the hold-
ing times Sy, Se,- - are independent exponential random variables of
parameters ¢, q;+1,- -+ respectively and the jump chain is given by

Y, =1+ n for all n.

(infinitesimal definition) for all t,h > 0, conditional on X; = i, Xy,

is independent of { X, : s < t} and, as h | 0, uniformly in t
P(Xpyn =i | Xe = i) =1—qih +o(h),
P(Xpp=1i+1| Xy =1i)=qh+o(h).

(transition probability definition) for all n = 1,2,--- | all times 0 <
to < --- < tpy1 and all states ig,- -+ ,in—1,%,]
P (Xt =3 | Xt =4, Xig =0, Xty = in—1) = pij (tns1 — tn)

where (pij(t)); jen is the unique solution of the forward equations.

If (Xt)t}0 satisfies any of these conditions, then it is called a birth process

of rates (gj : j > 0).

Proof. (i) = (ii). If (i) holds, then, by the Markov property for any ¢t,h > 0

conditional on X; = i, X;yp is independent of (Xs:s<t) and, as h | 0

uniformly in ¢

P(Xpyn 21+ 1| Xy =i) =P(Xp Z2i+1]Xo=1)

and

=P(Jy <h|Xo=1i)=1—e%"=qgh+o(h)

P(Xppn 2i+2| Xy =i) =P (X, >i+2]|Xo=1)
=P(Jo<h|Xo=i) <P(S; <hand Sy <h|Xg=1)

= (1 — e*qih) (1 — e*‘“Jflh) = o(h)

which implies (ii).
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(ii) = (iii). If (ii) holds, then certainly for k =i +2,i+3,---
P(Xitn =k | X¢e =1) =0(h) as h] 0, uniformly in ¢
Set p;j(t) =P (Xy =7 | Xo =1). Then, for j =1,2,---

pij(t +h) =P (Xipp, =j | Xo=1)

P(X;=k|Xo=)P(Xppn=7|X: =k)

I
MQ

x>

7 (t) (1= gjh +o(h)) + pij-1(t) (gj-1h + o(h)) + o(h)
h

li —pi) _ pij—1(t)gj—1 — pij(t)g; + O(h)

As in the proof of Theorem 2.6 we can deduce that p;;(t) is differentiable

pi

pij (t +

and satisfies the differential equation

Pl (1) = pij—1()gj—1 — pi (g

By a simpler argument we also find

Pio(t) = —pio(t)qo

Thus (pi;(t) 14,7 =0,1,2,---) must be the unique solution to the forward

equations. If (Xy),, satisfies (ii) then certainly
P (th+1 = in+1 | XO = io, e ’th = Zn) =P (th+1 = in+1 | th = 'Ln)

(iii) = (i). See the proof of Theorem 2.6. O

¥ ExaMPLE 2.2 (Yule process). Consider a population in which each in-
dividual gives birth after an exponential time of parameter A, all indepen-
dently. If ¢ individuals are present then the first birth will occur after an
exponential time of parameter ¢\ Then we have ¢ + 1 individuals and, by
the memoryless property, the process begins afresh. Thus the size of the
population performs a birth process with rates ¢; = iA. Let X; denote the
number of individuals at time ¢ and suppose Xy = 1. Write J = J;j for the
time of the first birth.
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(i)

Note that
EX; = Eth{Jgt} + Eth{J>t}
t
= / A ME[X; | J =s]ds+e M

0
Put p(t) = EXy, then E[Xy | J = s] = 2u(t — s), so

t
wu(t) = / 2Xe M u(t — s)ds + e M
0
and setting r =t — s

t
2/\/ e)""u )dr + 1
0

By differentiating we obtain u/(t) = Au(t), so the mean population

size grows exponentially:

EX; = e
Let ¢(t,z) = E 2%t for all t > 0 and |z| < 1, then
EZXt =K Zth{Jgt} =+ EZth{J>t}
t
= / e MR [in | J=s]ds+ e M
0
Note that E [ 2%t | J = s] = ¢(t — s, 2)?, hence

t
P(t,z) = ze M + / e Mp(t — s,2)%ds
0

Make a change of variables u =t — s in the integral and deduce that

%

o =6 - 1),

SO It
B(t,2) = ———

1—2z[1—e M’
We can deduce that, forn =1,2,---
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2.4 Jump chain and holding times

This section begins the theory of continuous-time Markov chains proper,
which will occupy the remainder of this chapter and the whole of the next.
The approach we have chosen is to introduce continuous-time chains in terms
of the joint distribution of their jump chain and holding times. This provides
the most direct mathematical description. It also makes possible a number
of constructive realizations of a given Markov chain, which we shall describe,

and which underlie many applications.

Let I be a countable set. The basic data for a continuous-time Markov
chain on [ are given in the form of a @-matrix. Recall that a Q-matrix on

I is any matrix QQ = (qij)m. <7 Which satisfies the following conditions:
(i) g >0 forall i # j,
(i) —gii = > ;4 qij < oo for all 4.
We will sometimes find it convenient to write ¢; as an alternative notation
for —q;;.
We are going to describe a simple procedure for obtaining from a @

matrix ) a stochastic matrix II. The jump matrix II = (ﬂ-ij)ijel of Q is
defined by

Qi ...,
) ¢ ifj#iand g #0 [0 ifg#0
7rij— qi T — . (210)
0 ifj#diand ¢ =0 1 ifg=0

This procedure is best thought of row by row. For each i € I we take,
where possible, the off-diagonal entries in the ¢ th row of () and scale them
so they add up to 1 , putting a 0 on the diagonal. This is only impossible
when the off-diagonal entries are all 0, then we leave them alone and put a

1 on the diagonal.

Here is the definition of a continuous-time Markov chain in terms of its

jump chain and holding times.
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Definition 2.3. A minimal right-continuous process (X;),, on [ is called a
continuous-time Markov chain with initial distribution X\ and generator
matriz Q, if its jump chain (Yy), ., is discrete-time Markov(A,II) and for
each n > 1, conditional on Yy, -+ ,Y,,_1, its holding times S1,--- , S, are in-
dependent exponential random variables of parameters ¢ (Yp), -+ ,q (Yn—1)

respectively. We say (Xi),- is Markov(A, @) for short.

Remark. That is, given a set of the form
B:{}/O:l()v 7Yn:inasl >S].;"' 7Sn >5n}

Our jump chain/holding time definition of the continuous-time chain (X;),

is saying that for such events
P(B) = NigTigiy -Winiline_qmsl coog Tin—aSn (2.11)
Then, this definition uniquely determines a probability measure P on

o ((Yn)n>0 ) (Sn)n>1) =0 ((Xt)t>0)

Moreover, one can show that conditional on {Y,,_1 = i}, S,, is independnt
of (Y,)n>o from (2.11).

Strong Markov property As for Poisson processes and birth processes,
we shall deduce the Markov property from the jump chain/holding time
definition. In fact, we shall give the strong Markov property as this is a
fundamental result and the proof is not much harder. However, the proof
of both results really requires the precision of measure theory, so we have

omitted it, one can find a proof on Markov Chians written by J.R.Norris.

Theorem (Strong Markov property). Let (X;),., be Markov(}, Q) and
let T' be a stopping time of (Xt), - Then, conditional on T' < ¢ and Xt =1,

(XT+t)t>0

is Markov(6;, ) and independent of (Xt),crp.
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2.4.1 Construct a Markov chain

First construction We can construct such a process as follows: let (Y5,),,-

be discrete-time Markov (A, IT) and let 77, Ts, - - - be independent exponential

random variables of parameter 1, independent of (Yn)n>o- Set
Sp=—In__ Sy+-+ 8 forn>1 (2.12)
— — . rn=>1. .
n q(Yn_l) bl n 1 mns orn
and define
Y, ifJ, <t < £
X, — o if J, < Jpy1 for some n Cfort>0. (2.13)
0  otherwise

Then (Xt)t>0 has the required properties, that is one can check that, (Xt)t>0
is minimal right-continuous process, its jump times is exactly (J,)n>0 and

its jump chian is exactly (Y;,)n>1, and (2.11) holds.

We shall now describe two further constructions. You will need to un-
derstand these constructions in order to identify processes in applications
which can be modelled as Markov chains. Both constructions make direct
use of the entries in the -matrix, rather than proceeding first via the jump

matrix.

Second construction We begin with an initial state Xy = Yy with distri-
bution A, and with an array {T 7{ n>=1l,5€l } of independent exponential

random variables of parameter 1. Then, inductively for n € N, on {Y,, = i},

we set )
; T’ .
Sq=""H forj#£i, Spp=infS (2.14)
dij J#i
and
Vo1 = JoAE S = S <00 (2.15)
i lf Sn+1 =

Then, conditional on Y,, = i, the random variables Sfl 41 are independent

exponentials of parameter g;; for all j # i. So, conditional on Y,, = 4, S, 41

93



is exponential of parameter ¢; = Zj £ Qijs Yn+1 has distribution (miz)

jel»
and S,41 and Y,41 are independent, and independent of Yp,--- .Y, and
S1,+++,Sp, as required. This construction shows why we call ¢; the rate of

leaving i and g;; the rate of going from i to j.

Our third and final construction of a Markov chain with generator matrix

@ and initial distribution A is based on the Poisson process.

Third construction Imagine the state-space I as a labyrinth(X &) of
chambers and passages, each passage shut off by a single door which opens
briefly from time to time to allow you through in one direction only. Suppose
the door giving access to chamber j from chamber ¢ opens at the jump times
of a Poisson process of rate g;; and you take every chance to move that you

can, then you will perform a Markov chain with Q)-matrix Q.

In more mathematical terms, we begin with an initial state Xg = Yy

with distribution A, and with a family of independent Poisson processes

{(ij) i eli# j}
=0
(Ntij ) having rate g;;. Then set Jy = 0 and define inductively for n € N,

g1 = jnf{t > Jp NtY”j # N}ij for some j # Yn},

j if Jup1 < oo and Ny £ Ny
YTL+1 — n+1 n
1 if Jn+1 = 0

The first jump time of <Ntij ) is exponential of parameter ¢;; . So by
Proposition 2.27, conditional on Yy = 4, J; is exponential of parameter ¢; =
Z#i ¢ij, and Y7 has distribution (m;; : j € I), and J; and Y; are indepen-
dent.

Now suppose 7' is a stopping time of (Xt),5q- If we condition on X

and on the processes (Nf),_. for (k,1) # (i, ), which are independent of

t>0
N}? then {T <t} depends only on {N” i < } So, by the strong Markov

94



property of the Poisson process Ntij = N}jﬂ — N%j is a Poisson process of
rate ¢;; independent of {Ngj 15 < T} , and independent of X and (Nfl)t>0
for (k,1) # (i, 7). Hence, conditional on T' < oo and X7 =4, (X14¢),5 has
the same distribution as (X;),5, and is independent of { X : s < T'}.

In particular, we can take T' = J,, to see that, conditional on J, < co and
Y, =i, Sp41 is exponential of parameter ¢;, Y;,+1 has distribution (mj)j el
and S,41 and Y,41 are independent, and independent of Yp,--- .Y, and
S1,+++,Sp. Hence (Xt);5 is Markov (A, @) and, moreover, (X;),, has the
strong Markov property.

The conditioning on which this argument relies requires some further
justification, especially when the state-space is infinite, so we shall not rely

on this third construction in the development of the theory.

EXERCISE

9 EXERCISE 2.3. (X3)5 is Markov(A, @), let (Yy,),,-q be the jump chain and
(Sn)pso the holding times. Then there exists 71,75, that are indepen-
dent exponential random variables of parameter 1, independent of (Y3,),,~0,
satisfying

T,

Sp=——— forn>1.
Q(Yn—l)

2.4.2 Explosion

We saw in the special case of birth processes that, although each holding
time is strictly positive, one can run through a sequence of states with shorter
and shorter holding times and end end up taking infinitely many jumps in a
finite time. This phenomenon is called ezplosion. Recall that for a process
with jump times Jy, J1, J2, -+ and holding times 51, S2, - - - , the explosion

time ( is given by

¢ = sup J, :iS"
n n=1
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We say that a @ -matrix () is explosive if, for the associated Markov chain
Pi(¢ <o0) >0 for someie I (2.16)

Otherwise @ is non-explosive. It is a simple consequence of the Markov
property for (Y3,),- that under P; the process (Xi),, is Markov (4, Q).
The next result gives simple conditions for nonexplosion and covers many

cases of interest.

Theorem 2.16. Let (Xt),5, be Markov(A,Q). Then (Xi),5, does not ex-

plode if any one of the following conditions holds:
(i) sup;er ¢ < oo, particulatly, I is finite.

(i) Xo =1, and i is recurrent for the jump chain.

Proof. By Exercise 2.3, there exists T1, Ty, - - - are independent exponential(1)
and independent of (Y3,),5, - In cases (i), let ¢ = sup; ¢; < oo then

00
n=1

In case (ii), since i is recurrent for (Y5,),~o, 80 (Yn),>o Visits ¢ infinitely

often, at times Ny, No,--- , say. Then
oo
C 2 Z SNk+1 )
k=1

it suffices to show that (Sy,+1)k>1 is i.i.d. r.vs sequence with distribution

expoential(g;). For any tq,--- ,tx > 0,

P(SNi41 > t1, -+ SNt > ti)
= Z P(Sny41 > t1,- 5 Sppg1 >t s Ni = na, -+, Ny = ny,)

ni, Nk
= E P(Ny =nq,- -, Ny = ng)e 9illitt) — gmailtitte)
N1, Nk

as required. O

96



2.5 Forward and backward equations

Although the definition of a continuous-time Markov chain in terms of
its jump chain and holding times provides a clear picture of the process,
it does not answer some basic questions. For example, we might wish to
calculate

pi(t) =Pi (X = j).
In this section we shall obtain two more ways of characterizing a continuous-
time Markov chain, which will in particular give us a means to find p;;(t).

Let
P(t) = (pij(t))ijer

Then P(t) is a substochastic matrix (if ) non-explosive, P(t) is stochastic),

and {P(t)} is called transition matrix.

Proposition 2.17 (C-K equation). For transition matrix { P(t)}, we have
P(0) =1, and for each t,s > 0,

P(t+s) = P(t)P(s). (2.17)
Proof. For any i,j € I,

pij(t+s) =P (Xpys = J) = Z]Pi (Xt =k, Xiys = J)

kel
=Y Pi(Xi =k)Pi (Xpps=j | Xy = k)
kel
= ZPi (X = k) Py (X5 =) = Zpik(t)pkj(s) )
kel kel
and we have used Markov property. O

Lemma 2.18. (Xy);5, is Markov(\,Q), let (Ju)n>1 be the jump times.
Then, as t — 0,

(i) Pi(t < Jl) =1—gqit+ O(t).
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(i) Pi(J1 <t < Jo) =gt + o(t).
(iii) Pi(t > Ja) = o(t).
Proof. (i) is trival, since P;(t < Ji) = e %" =1 — g;t + o(¢).
To show (ii), note that for j # i,
t
Pi(J1 <t < Jo, Y1 =j) = / gie" U e () ds
0
t
= qije_‘“t/ el 45 = qijt +o(t) ,
0
since Z#i ¢ij < 00, we get

Pi(Jl <t< <]2) = ZPi(Jl <t< JQ,Yi :]) :qit‘FO(t).
J#i

Obviously, (i) and (ii) imply (iii).

Proposition 2.19. {P(t)} satisfies

(i) P(t) is uniformly continuous. Indeed , for given i,j € I

pij(t +h) — pij(t)| <1 —e %" forallt,h >0, .

(ii) P'(0) = Q. In other words

i (t) — 0ij o
lim m = q;; for all'i,j.

tl0 t

Proof. To show (i), note that

i (t+ 1) = pig ()] =D par (h)prs () — pis (t)
kel

— Zpik(h)pkj (t) = (1 = pii(h)) piz (1)
kot

<1—pii(h) <P (Jy <h)=1—e %k,
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To show (ii), note that for ¢ # j
pij(t) =Pi(Xy = j, 1 <t < o) + Pi(Xy = j, Jo < 1),

we have shown the first term is ¢;;¢ + o(t) and the second is o(t) in the proof

of Lemma 2.18, so
. pij(t)
1 — .
tlfgl ; qij

For j =1,
1-— pii(t) =P (Xt #* Z) = ]P’i(Jl <t < JQ) + O(t) = qt + O(t) ,
as required. O

We come to the key result for continuous-time Markov chains. We shall
present first a version for the case of finite state-space, where there is a
simpler proof. In this case there are three alternative definitions, just as for

the Poisson process.

Proposition 2.20. Let (X;),., be a right-continuous process with values
in a finite set I. Let ) be a Q-matrix on I with jump matrix II. Then the

following three conditions are equivalent:

(i) (jump chain/holding time definition) conditional on Xy = i, the jump
chain (Yy,),~o of (X¢);5q is discrete-time Markov(d;, Il) and for each

n > 1, conditional on Yy, -+ ,Y,_1, the holding times Si,--- ,S, are
independent exponential r.v.’s of parameters q(Yy), -+ ,q(Yp—1) re-
spectively .

(ii) (infinitesimal definition) for all t,h > 0, conditional on X; = i, X4y,

is independent of { X : s < t} and, as h — 0, uniformly in t,

]P)(Xt+h =7 ’ X = Z) = (51'3‘ + qZ'jh + O(h) , forall j.
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(iii) (transition probability definition) for alln > 1, all times 0 < tg < t1 <

o+ < tpy1 and all states ig, - -+ ,ip—1,%,5 € 1
P (X =7 | X, =4, Xy =0, , Xen_y = in-1) = Dij (tn+1 — tn)

where (p;;(t) :4,j € I,t > 0) is the (unique) solution of the forward
equation
P() = P()Q, P(0)=1.

or the backward equation
P(t) = QP(t), P(0)=1.
If (X¢) satisfies any of these conditions then it is called a Markov chain
with generator matrix Q.
Proof. (i) = (ii). Suppose (i) holds, then, as h — 0,

Pi(Xp=1) =P (Xp,=14,J1 >h)+Pi(Xp =1i,J2 < h)
= e 4l 1 o(h) =1+ qih +o(h),

where we used P;(Xy, =i, Jo < h) < Pi(J2 < h) = o(h). And for j # i we

have
P (Xp=7) =P (Xp =4, J1 <h < Jo) + P (X, = j, Jo < h)
h
= qij / e—qise—qj(h—s) ds + O(h) = Qijh + O(h) .
0
Thus for every state j,
P; (X, = j) = 65 + qijh +o(h) .

Then by the Markov property, for any ¢, h > 0, conditional on X; = ¢, X4,
is independent of {X, : s <t} and, as h — 0, uniformly in ¢

]P)(XtJrh:j ’ Xt:i) =P (Xh:j) :(L-j—i—qijh—i—o(h).
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(ii) = (iil). Set p;;(t) = P; (X¢ = j). If (ii) holds, then for all t,h > 0, as
h — 0, uniformly in ¢,

pii(t+h) = P (X =k)P(Xpyp=j | Xy = k)
kel

= szk 5k] + ijh + O(h)) ,
kel

(2.18)

since [ is finite we have

Dij (t + h pz]

szk qkj +o 1)

kel
So, letting h | 0, we see that p;;(t) is differentiable on the right. Then by
uniformity we can replace t by t — h in the above and let h | 0 to see first
that p;;(t) is continuous on the left, then differentiable on the left, hence
differentiable, and satisfies the forward equations
pii(t) = pi(tars  pig(0) = &y
kel

since I is finite, p;;(t) is then the unique solution by Proposition 2.30. Also,
if (ii) holds, then

P(Xt :j\th:i,Xt():’io,"'7th,1=in—1):P(Xt =j| X, =

n+1 n+1

and, moreover, (ii) holds for (Xy, 1¢),5o so, by the above argument,
P (th+1 =J ’ th = Z) = Pij (tn—i-l - tn)

proving (iii).

(iii) = (i). See the proof of Theorem 2.6. O

Remark. It should emphsized that we have supposed that I is a finite set
in Proposition 2.20, how about [ is infinite 7

In the proof above, we can see that (i) = (ii) still holds, but (ii) = (iii)
becomes problematic : in (2.18), when [ is infinite, we can not guarantee
that >, 7 pix(t)rs;(h) is o(h), where r;(h) = prj(h) — 6xj — qrih = o(h).

101



We turn now to the case of infinite state-space. The backward equation

may still be written in the form
P'(t)=QP(t), P0)=1I
only now we have an infinite system of differential equations
Pi(t) = qikpri(t),  pij(0) = 0y
kel

A solution to the backward equation is any matrix (p;;(t) : 4,5 € I) of dif-

ferentiable functions satisfying this system of differential equations.

Theorem 2.21. Let @ be a Q-matrix. Then the backward equation
Pl(t) = QP(t), PO)=1

has a minimal non-negative solution {P(t)}. This solution forms a matriz
semigroup
P(s)P(t)=P(s+t) foralls,t>0.

We shall prove this result by a probabilistic method in combination with
Theorem 2.22. Note that if I is finite we must have P(t) = e!Q by Propo-
sition 2.30. We call {P(t) : t > 0} the minimal non-negative semigroup
associated to ), or simply the semigroup of @), the qualifications minimal

and non- negative being understood.

Here is the key result for Markov chains with infinite state-space. There
are just two alternative definitions now as the infinitesimal characterization

becomes problematic for infinite state-space.

Theorem 2.22. Let (X;),,, be a minimal right-continuous process with
values in I. Let Q be a Q-matrix on I with jump matrix Il and semigroup

{P(t)}. Then the following conditions are equivalent:

(i) (jump chain/holding time definition) conditional on Xy = i, the jump
chain (Yy),,5q of (Xt) 5 is discretetime Markov(6;, 1) and for each n >
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1, conditional on Yy, --- ,Y,_1, the holding times Sy, --- , S, are inde-
pendent exponential random variables of parameters q (Yp) , -+ ,q (Yn—1)

respectively .

(ii) (transition probability definition) for all n > 1, all times 0 < ty < t; <

oo < tpy1 and, all states ig, -+ ,in—1,%,]
P(Xe,,, =4 | X, =6, Xey =10, , X, =tn-1) = pij (tny1 — tn) -

If (X;), > 0 satisfies any of these conditions then it is called a Markov chain

with generator matrix @) .

Proof of Theorem 2.21 and 2.22 . We know that there exists a process (Xt);
satisfying (i). So let us define P(t) = (p;;(t)) by

pij(t) = Pi (X = 7) -
Step 1. We show that {P(t)} satisfies the backward equation.

Conditional on X = i we have J; ~ Exp (¢;) and X, ~ (mix)c;- Then
conditional on J; = s and X, = k we have (Xs11),5o ~ Markov (6, Q) -
So

Pi (X = j,t < Ji) = e 45,

and .
Pi(1<t,X;, =k Xy =j) = / gie” P mipr(t — s)ds
0
Therefore

piy(t) =P (X =4t <))+ > Pi(i <t, Xy, =k X; =)
P

t
= e*q"téij + Z/ gie” 1 mipri(t — s)ds (2.19)
ki V0
Make a change of variable u = ¢t — s in each of the integrals, interchange sum

and integral by monotone convergence and multiply by e%! to obtain

t
eqitpij (t) = 0i; + / Z qie? T (u)du (2.20)
0 i
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This equation shows, firstly, that p;;(t) is continuous in ¢ for all 4,j. Sec-
ondly, the integrand is then a uniformly converging sum of continuous func-

tions, hence continuous, and hence p;;(t) is differentiable in ¢ and satisfies

et (qipij () + 1 (1) = > qie® minpi; (t)
k#i
Recall that ¢; = —q;; and ¢;x = ¢;m;, for k # i. Then, on rearranging, we

obtain

i (t) = qikpr;(t) (2.21)
kel

So P(t) satisfies the backward equation. The integral equation (2.19) is

called the integral form of the backward equation.

Step 2. We show that if ﬁ(t) is another non-negative solution of the
backward equation, then P(t) < P(t), hence P(t) is the minimal non-
negative solution. The argument used to prove (2.19) also shows that

P; (X = j,t < Jny1)
(2.22)

— ¢4ty +Z/ gie” i Pr (Xi—s = Jyt — s < Jp) ds.
k#1

On the other hand, if P (t) satisfies the backward equation, then, by reversing
the steps from (2.19) to 2.21, it also satisfies the integral form:

pij(t) = e 15, —i—Z/ gie” " mipri(t — s)ds. (2.23)
k#i

If P(t) > 0, then
P; (X¢ =j,t < Jo) =0<p;;(t) foralli,jandt.
Let us suppose inductively that
P; (Xy = j,t < Jy) < pi;(t) foralli,jandt,
then by comparing (2.22) and (2.23) we have

P (Xy =j,t < Jpy1) < pij(t) foralli,jandt,
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and the induction proceeds. Hence
pij(t) = lim P; (X = j,t < Jp) < p;;(t) foralli,jandt.
n—o0
Step 3. Since (X¢),5, does not return from oo we have

pij(s +1) =Pi (Xops = §) = > Py (Xops = | X5 = k) Py (X = k)
kel

=Y P (X =k)Pp (Xe=4) =Y pir(s)pr; (t

kel kel
by the Markov property. Hence {P(t) : t > 0} is a matrix semigroup. This
completes the proof of Theorem 2.21.

Step 4. Suppose, as we have throughout, that (Xi),, satisfies (i).
Then, by the Markov property

P (Xt =7 | X, =1, X4y =0, Xty = in—1)

=P; (Xtpy1—tn =) = Pij (tn1 — tn)
80 (X¢),5 satisfies (ii). We complete the proof of Theorem 2.22 by the usual
argument that (ii) must now imply (i) : if (ii) holds, the finite-dimensional

distributions of (Xt)t>o is uniquely determined, and hence the distribution

of jump chain and holding times. O

So far we have said nothing about the forward equation in the case of in-
finite state-space. Remember that the finite state-space results (Proposition

2.30) are no longer valid. The forward equation may still be written
P'(t) = P(t)Q, P(0)=1
now understood as an infinite system of differential equations

kel

A solution is then any matrix (p;;(t)), .., of differentiable functions satisfy-

ije
ing this system of equations. We shall show that the semigroup {P(¢)} of @
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does satisfy the forward equations, by a probabilistic argument resembling
Step 1 of the Proof of Theorem 2.21 and 2.22.

This time, instead of conditioning on the first event, we condition on the
last event before time ¢. The argument is a little longer because there is no
reverse-time Markov property to give the conditional distribution. We need

the following time-reversal identity.

Lemma 2.23. We have

QinP(Jn<t<Jn+1 |Yb:i0,Y1:i1,"' 7Yn:7ln)

ZQio]P)(Jn <t < Jn—i—l ‘ Yo =g, 7Yn—1 :ilvyn:i())

Proof. Conditional on Yy =g, -+, Y, = i,, the holding times Sy, --- , Sp11
are independent with Sy ~ Exp (Qik_1) . So the left-hand side is given by

n
/ G, exp{—qi, (t —s1— - —sp)} H i1 €XP {—qi,_, 5k } sy,
A(t) P

where
A(t)={(s1,-,8n) : 81+ -+ 5, <tand sy, -, 8, >0}.

On making the substitutions vy =t — s —--- — s, and up = Sp_g4o, for

k=2,---,n, we obtain

Qin]P)(Jngt<<]n+1 |}/0:Z.07"' 7Yn:Zn)

n
= /A( : Gio eXp {—qiy (t —u1 — -+ —up)} H Qi _pyq €XP {_Qinfkﬂuk} duy,
' k=1

:inP(Jn<t<Jn+1‘Yb:in,“' ,Yn_lzil,Yn:ig) . g

Theorem 2.24. We have The minimal non-negative solution (P(t) : t > 0)
of the backward equation is also the minimal non-negative solution of the

forward equation



Proof. Let (X¢),5q denote the minimal Markov chain with generator matrix
. By Theorem 2.22

pij(t) = P; (Xy = j)

- ZZ]P)% (Jn <t< Jn—i—laYn—l - k,Yn :]) .
n=0 k#j

Now by Lemma 2.23 for n > 1, we have

]Pi (Jn <t < Jn+1 ’Yn—l = ]{Z,Yn :])

- gpﬁ(‘]n <t<Jpp1 | Y1=kY, =1)
J
g [*
== | qie Py (Jpo1 St—5<Jp | Yoo1 =1i)ds
q;5 Jo
t
= Qi/ e Ep (g, <t—s< | Vg =k)ds
0 qi

where we have used the Markov property of (Y7,) n>o for the second equality.

Hence

00 t
pij(t) = (5ije_qz‘t —+ ZZ/ IPZ' (Jn—l <t—s< Jn ’ Yn—l = k)
n=1 k5”0

X P (Y1 =k, Y, =7) qe Y% ds

o0 t
= dije W 4> Z/ Pi (Jno1 <t —5< Jn, Vo1 = k) qurrje %% ds
n=1 k5’0

= 80 %t + /t sz‘k(t — s)qrje” Vo ds (2.24)
0 ktj
where we have used monotone convergence to interchange the sum and in-
tegral at the last step. This is the integral form of the forward equation.
Now make a change of variable u = t — s in the integral and multiply by
e9it to obtain

t
pij(t)e¥t = 6,5 + / Zpik(u)qkjeqj“du (2.25)
0 kzj
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We know by equation (2.20) that e%’p;.(t) is increasing for all i, k. Hence
either >, pir(u)qy; converges uniformly for u € [0,¢] or

sz‘k(u)%j =00 forallu>t

Py
The latter would contradict (2.25) since the left-hands ide is finite for all ¢
so it is the former which holds. We know from the backward equation that

pij(t) is continuous for all 4, j; hence by uniform convergence the integrand

in (2.25) is continuous and we may differentiate to obtain
P (1) + i (s = Y pin(t)ar; (2.26)
k£
Hence P(t) solves the forward equation.

To establish minimality let us suppose that p;;(¢) is another solution of

the forward equation; then we also have

t
Pij(t) = dyje™ " + Z/ Pik(t — s)qrje” ¥ ds
ki 70

A small variation of the argument leading to (2.24) shows that, for n > 0
Pi (Xi = j,t < Jpt1)

t
= (5,']'67%1e + Z/ P; (Xt =7,t< Jn) ijeiqjs ds.
ity 7O

(2.27)

If P(t) >0, then
P(X;=j,t <Jy) =0<p;(t) foralli,jandt
Let us suppose inductively that
P; (X¢ = j,t < Jy) <pij(t) foralli,jandt.
then by comparing (2.26) and (2.27) we obtain
P (Xy =j,t < Jpy1) < pij(t) foralli,jandt,
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and the induction proceeds. Hence

pij(t) = 1Lm P; (Xy =j,t < Jp) <pi;(t) foralli,jandt.
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2.6 Appendenix
Exponential distribution

A random variable T' : Q — [0, 00] has exponential distribution of pa-

rameter A (0 < A\ < oo) if
P(T>t)=e forallt>0
We write T' ~ Exp(\) for short. If A > 0, then T has density function

fT(t) = e M 1{t20} .

and

1 1
ET:X,Var(T):p

The exponential distribution plays a fundamental role in continuous-time

Markov chains because of the following results.

Proposition 2.25 (Memoryless property). A random variable T : ) —
(0,00] has an exponential distribution if and only if it has the following

memoryless property:

P(T>s+t|T>s)=P(T>t) forallst>0

The next result shows that a sum of independent exponential random
variables is either certain to be finite or certain to be infinite, and gives a
criterion for deciding which is true. This will be used to determine whether
or not certain continuous-time Markov chains can take infinitely many jumps

in a finite time.

Proposition 2.26. Let 51,5, -+ be a sequence of independent random

variables with S,, ~ Exp (A,) and 0 < A\, < oo for all n
(i) If >, /\%L < 00, then P (377, S, < o0) = 1.

(i) If Y02 ) 3= = oo, then P (372, Sy = 00) = 1.
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Proof. (i) Suppose > 2, )\i < 0. Then, by monotone convergence

]EZS —Z—<oo
and

P<i5n<oo> =1.
n=1

(i) Suppose instead that Yo" ; &+ = oo. Then [[°2, (1+ ;) = co By mono-
tone convergence and independence

<exp{ ZS }) ZEE(eXp{—Sn}) = ﬁ <1+A1n>_1 =0.

n=1

P@s :oo)zl. 0

The following result is fundamental to continuous-time Markov chains.

Proposition 2.27. Let I be a countable set and let T, k € I, be indepen-
dent random variables with T}, ~ Exp (qx). Suppose 0 < q = >, .1 qx < 00.
Set T' = infy, Ty,. Then

(i) the infimum is attained at a unique random value K of k, with prob-

ability 1, and

(ii) T and K are independent, with T ~ Exp(q) and P(K = k) = %’“.
Proof. Set K = k if T, < T} for all j # k, otherwise let K be undefined.
Then

P(K=kand T >1t)

P(T), >t and T; > T}, for all j # k)

/ gre” P (Tj > s for all j # k) ds
t

/ qre qksHe 9% ds
t

J7#k

o qk
/ qre P ds = Zedt,
t q

8
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Hence P(K = k for some k) =1 and T and K have the claimed joint distri-
bution. O

Lemma 2.28. Let S;,Ss, ... be independent exponential(A). The sum T,, =
S1+ -+ Sy has a gamma(n, \) distribution. That is, the density function
of T, is given by

(At)"1

fr, (t) = Ae M. ]

fort >0
and 0 otherwise.

Proposition 2.29. Let Sy, 59, -+ be independent exponential r.v.’s of pa-
rameter \. Let V' be an independent geometric r.v. with parameter p. Then

T = Zyzl S; has exponential distribution of parameter p A.

Proof. Using the preceeding lemma. O

Matrix exponentials

For any matrix Q = (g;; : 4, j € I), the series
>0
k=0

converges componentwise and we denote its limit by e?. Moreover, if two

matrices ()1 and ()2 commute, then

eQ11Q2 — Q1,Q2

The proofs of these assertions follow the scalar case closely and are given in

Suppose then that we can find a matrix Q with e? = P Then
enQ — (eQ)n — pn
SO (etQ it > 0) fills in the gaps in the discrete sequence.
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Proposition 2.30. Let Q be a matrix on a finite set I. Set P(t) = '@
Then {P(t) : t > 0} has the following properties:

(i) P(s+t)= P(s)P(t) for all s,t (semigroup property);

(ii)) (P(t) : t > 0) is the unique solution to the forward equation

d
ZP(t) = P)Q, PO)=1.

(iii) (P(t) : t > 0) is the unique solution to the backward equation

d
ZP(t) = QP(t), P(0)=1.

(iv) for k=0,1,2,..., we have

()

Proof. For any s,t € R, sQ) and t() commute, so

t=0

QR — (s+1)Q

proving the semigroup property. The matrix-valued power series

0 k
Pt)=3" (tfl)

k=0

has infinite radius of convergence. So each component is differentiable with

derivative given by term-by-term differentiation:

0 tk—le
Pty=> o 0@ = QP
k=1

Hence P(t) satisfies the forward and backward equations. Moreover by re-
peated term-by-term differentiation we obtain (iv). It remains to show that
P(t) is the only solution of the forward and backward equations. But if
M (t) satisfies the forward equation, then

d d d
— (M@t)e @) = [ =M@) ) e @+ M) [ —e ¢

i (10 ) = (FM0) 4 20) o

= M(t)Qe 0 + M(t)(—Q)e @ =0
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so M(t)e™*? is constant, and so M(t) = P(t). A similar argument proves

uniqueness for the backward equation. O
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Chapter 3

Continuous-time Markov
chains(IT)

This chapter brings together the discrete-time and continuous-time the-
ories, allowing us to deduce analogues, for continuous-time chains, of all
the results given in Chapter 1. A reasonable understanding of Chapter 1 is
required here, but, given such an understanding, this chapter should look

reassuringly familiar.

3.1 Basic properties

3.1.1 Class structure

A first step in the analysis of a continuous-time Markov chain (X;), is
to identify its class structure. We emphasise that we deal only with rninimal
chains, those that die after explosion. Then the class structure is simply
the discrete-time class structure of the jump chain (Y3,),5¢, as discussed in

Subection 1.1.3 before.

We say that i leads to j and write ¢ — j, if
P; (X; = j for some t > 0) > 0
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We say i communicates with j and write ¢ «+ j if both ¢ — j and
j — 1. The notions of communicating class, closed class, absorbing state and

irreducibility are inherited from the jump chain.

Theorem 3.1. For distinct states ¢ and j, the following are equivalent:
(i) i—37;

(ii) i — j for the jump chain ;

(1ii)  Qiyiy Qiyig * * * Qi _qi,, > 0 for some states ig,i1,- - ,i, with ig = i and
i = 7.
(iv) pij(t) > 0 for all t > 0.
(v) pij(t) > 0 for some t > 0.
Proof. Implications (iv) = (v) = (i) = (ii) are clear.
(ii) = (iii). ¢ — j for the jump chain , then there are states ig, i1, - ,in

with ig = 4,4, = j and i, Tiyig - - i, i, > 0, which implies (iii).

(iii) = (iv). If g;; > 0, then
pij(t) 2P (Y1 =4, J1 <t,5 >t) = (1—e ) me 4" > 0.
for all t > 0, so if (iii) holds, then
Pij () = pigiy (t/1) -+ pi, 4, (£/0) >0

for all t > 0, and (iv) holds. O

3.1.2 Hitting probabilities

Let (Xt);~q be a Markov chain with generator matrix @. The hitting

time of a subset A of [ is the random variable 74 defined by
TA(w) =1inf{t > 0: X;(w) € A}

116



with the usual convention that inf & = co. We emphasise that (X;),5 is

minimal. So if Tgy) is the hitting time of A for the jump chain, then

{T,(L;Y) < oo} = {74 < 0}

and on this set we have
TA=J )
TA
The probability, starting from i, that (X;),, ever hits A is then
hi ZPi(TA < OO) Z]P’i <TI(4Y) < OO)

When A is a closed class, h; is called the absorption probability. Since the
hitting probabilities are those of the jump chain we can calculate them as

in Section 1.2.

Theorem 3.2. The vector of hitting probabilities (h;);c; is the minimal

non-negative solution to the system of linear equations

hi =1, fori € A.
(3.1)
h; = Zjes mijhj, fori ¢ A.
Proof. Apply Theorem 1.8 to the jump chain. O

3.1.3 Hitting times

The average time taken, starting from 4, for (X;),, to reach A is given
by
ti=Ei(ta) , foriel.
In calculating ¢; we have to take account of the holding times so the rela-

tionship to the discrete-time case is not quite as simple.

Theorem 3.3. @ is non-explosive. The vector of mean hitting times (t;);;

is the minimal non-negative solution to the system of linear equations

t; =0, for i € A.
(3.2)

t; = i%zﬁéiﬂ'ljt]’, fOI‘i¢A.
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Proof. First we show that t = (t;),c; satisfies (3.2). If Xo =i € A, then
T4=0,80t;=0.1If Xg=14¢ A, then 74 > J;, and

ti=Ei(ra) =Ei (1) + S E(ra— J1 | Y1 = )Py (Y = j) |
JF
by the strong Markov property of (X;)¢>o,
Ei (ta = Ju | Y1 =3) =E;j (Ta) = t;,

thus

1

t; = ; + Zﬂijtj .
(2 ..

Suppose now that y = (y;);c; is another solution to (3.2). Then t; =
y; = 0 for ¢ € A. Suppose i ¢ A, then

1 1 1
Yi = g‘f‘zﬂijyj = EJFZM]‘ <q+zﬂjkyk>
7 7 ]

j¢A jEA k¢A
=E;(S1)+E; <521{7—(Y)>2}) + Z Z T TikYk -
4 jEAkgA

By repeated substitution for y in the final term we obtain after n steps
yi = Ei (S1) + - + E; <S”1{rf4y>;n}> + Z Tijy *** Tjp—1n Yiin -
j17... 7jn¢A
Since y is non-negative

quy)/\n

b2 Y E(Smlon,, ) =Ei [ X S,
m=1 m=1

where we use the notation Tf(ly) A n for the minimum of TISXY) and n. Now
)
Z Sm=TaNC.
m=1

since ) is non-explosive, by monotone convergence,
yi 2 Ei (taNCQ) =E;(14) = t;,

as required. O
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3.2 Recurrence and transience

Let (Xt);5o be Markov chain with generator matrix @. Recall that we

insist (X¢),5, be minimal. We say a state i is recurrent if
P; ({t >0: X; =i} is unbounded ) = 1.
We say that i is transient if
P;({t >0: Xy =i} is unbounded ) =0.

Note that if (Xt),5, can explode starting from 4, then i is certainly NOT
recurrent. The next result shows that, like class structure, recurrence and

transience are determined by the jump chain.

Theorem 3.4. State i € I is recurrent for the jump chain (Y,),, if and

only if i is recurrent for (X¢);5-

Proof. Suppose i is recurrent for (Yy,),.,. Starting at 4, (X¢);5, does not

explode, so J, — oo by Theorem 2.16. Also
Xy, =Y, =1

infinitely often, so {t > 0: X; =i} is unbounded, with probability 1.

Suppose i is transient for (Y,,),,~q - If Xo =i then
N=sup{n>0:Y,=i} <o

so {t > 0: X, =i} is bounded by Jy41, which is finite with probability 1,

because (Yy,), <y cannot include an absorbing state. O

Corollary 3.5. We have,
(i) every state is either recurrent or transient ;

(ii) recurrence and transience are class properties.
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The next result gives continuous-time analogues of the conditions for
recurrence and transience found in Theorem 1.15. We denote by o; the first

passage time of (Xt),5q to state i, defined by
o =inf{t > J; : X; =i} .
Theorem 3.6. The following dichotomy holds:
(i) ¢ =0orP;(o; <oo) =1 <& iis recurrent < [ p(t)dt = co.
(i) ¢ >0 and P; (0; < 00) <1 & i is transient < [ pi(t)dt < oo.
Proof. 1t suffices to show (i). Note that if ¢; = 0, then (X;),,, cannot leave

i, s0 i is recurrent, p;;(t) = 1 for all ¢, and fooo pii(t)dt = oco.
(

Suppose then that ¢; > 0. Let aiy) denote the first passage time of the

jump chain (Y,),,, to state i. Then, we have
0; = JU«EY) y

hence
P; (O’Z(Y) < OO) =P (0’2‘ < OO) .
Thus ¢ is recurrent if and only if IP; (0; < 00) = 1, by Theorem 1.15 and the

corresponding result for the jump chain.

Claim: Let GS/) be the Green function for the jump chain, then
& 1
/ pii(t) dt = *ng/) - (3.3)
0 4

So i is recurrent if and only if fooo pii(t) dt = oo, by Theorem 1.15 an dt he

corresponding result for the jump chain. To establish (3.3), we use Fubini’s
theorem,
/ pii(t) dt = / Ei (I{Xi:i}) dt = EZ/ 1{Xi:i} dt
0 0 0
=B Y Seiilpv,—iy = Y Bi(Sn1 | Yo = )P (Yo = i)
n=0 n=0
1y - tom
== P;(Y,=i)=—Gy; . O
" qi
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Let T; denote the the time (X;),, stayed at 4, that is

00 o
Ti= / Lix,=ipdt = Z Sn+11{y, =i} -
0 n=0
Theorem 3.7. Suppose Xy = ¢ and 7 is transient. Then T; is a exponential

random variable with parameter q;(1 — p;;), where py; = Pi(T; < 00).

Proof. Let V; be the visiting times for the embedded chain to state i, that
is
oo
Vi=2 Lliva=i-
n=0
We have shown that in Subsection 1.4.2, V; ~ geometric(1 — pj;).

Let & = 0 and & = inf{n > {1 +1:Y, =i} for k > 1, is the k-th

passage time for (Y;,),,- to state i. It’s easy to see that

Vi
T = Z S§k+1 .
k=1

Claim : Let {n,} be i.i.d. exponential r.v’s with parameter ¢;, and {n,} is

independent with V;, then

T L > .

To show this, note that
Pi (Sget1 Stes1<k<n|Vi=n) =P (e <t 1 <k <n)

Thus, conditional on {V; = n}, T; and Zkv;l S¢,+1 have the same distribu-

tion. Since n is arbitary,Which deduce that the claim above is ture.

By Proposition 2.29, Zk‘/’:l Nk ~ Exp(qi(1— pii)), so the same for T;. O

Finally, we show that recurrence an dt ransience are determined by any

discrete-time sampling of (Xt),-, sometime is calle dt he h-skeleton.
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Theorem 3.8. Let h > 0 be given and, set Z, = X, forn > 0. Theni € I

is recurrent for (Xt),, if and only if i is recurrent for (Zy),,-

Proof. 1f i € I is recurrent for (Zy,),,-q, obviously for (X),-¢. ,

To show the necessity, note that, for ¢ € [nh,(n + 1)h], we have the
estimate

pii((n+ 1)h) > e %" p;;(t)

which follows from the Markov property. Then, by monotone convergence

/ Pii (t) dt g heqih Z Dii (nh)
0

n=1

an dt he result follows by Theorem 3.6 and Theorem 1.15. 0
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3.3 Invariant distributions

In discrete time a measure is invariant if AP = \. However there is no
first £ > 0, in continuous time we need the stronger notion: a measure A on

I is said to be invariant for {P(t) : t > 0} if
AP(t)= X, forallt>0. (3.4)

In addition, if X is a distribution, it is called a invariant distribution.

The last condition is difficult to check since it involves all of the {P(¢)}
and, as we have seen in the previous section, the P(t) are not easy to com-

pute.

Proposition 3.9. Let (Xt),5, be Markov(\, Q) and A is an invariant mea-
sure for the semigroup {P(t)}. Then for any s > 0, (Xyys);5q Is also
Markov(\, Q).

Proof. Firstly, for each i € I,
IP(XS = Z) = (/\P(S))Z = /\i .
On the other hand, by the Markov property, we have that (Xsit); is

Markov(d;, Q) conditional on {X, = i}. O

Based on this property, invariant distribution is also called stationary

distribution.

Lemma 3.10. Let Q be irreducible. If X is an invariant measure for { P(t)},
then A = 0, or 0 < A < co. Paricularly, if A is an invariant distribution for
P(t), then \; > 0 for all i.

Proof. Since @ is ireducible, for any 4, j € I, we have
pij(t) >0, forallt>0.

Thus if \; >0
/\j > )\Z‘pij(t) >0. ]
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3.3.1 Existence and uniqueness of invariant measures

In continuous-time, by iterating the equation (3.4) we get nothing. How-

ever, we still define
. gi &
F; :El/ 1{Xé]}dS:/ Pl(stjvsgal)dSo
0 0

for any 7,7 € I. Then we will check if I' = (F;)je 7 is a invariant measure

for P(t). Moreover, it’s easy to see that I'f = i.

Theorem 3.11. Suppose i is recurrent. Then I' = (F?)jg is an invariant
measure for {P(t)}.

Remark. By the “cycle trick”, it’s easy to see that the theorem is ture.
Fé- is the expected time staying in state j in [0,0;]. Multiplying by P(t)
moves us forward ¢ in time so (F iP(t))j is the expected time staying in
state j in [t,0; + t]. We need the condition ¢ is recurrent, then o; < co and
(Xo,+t)>0 18 Markov(d;, @), then the expected time staying in state j in
[0,t] and [0, 0; + t] consides, so we have Fé- = (FiP(t))j.

Proof. For any k € S,

> Tlpji(t) = Z/Ooopjk(t)ﬁ% (Xs=j,s <oy)ds

JjeS jes

o
= / P (Xs =7, Xs1t =k,s < 0;)ds
jes 0

o

:/ P (Xsyt =k, s < 0y)ds
0

:/ P (Xy =Fk,u<o0;+t)du
t

O’i+t
= El/ 1{Xu:k:} du
t

®In fact, we omitted that X : [0,00) x Q — I; (t,w) — X¢(w) is measurable.
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Since ¢ is recurrent, under P; we have g; < oo, and by strong Markov

property, (Xo,+t);5q is Markov(d;, @), thus

o+t t t )
Ez/ 1{Xu:k,}du = Ez/(; 1{Xu+ai=k}du = EZ/O 1{Xu:k}du = F2 .

i

So we get g Fé-pjk(t) =TI'l, in other words, I'"P(t) =T for all t > 0. O

Remark. Without the condition that i is recurrent, we can see I'* is not

always invariant from the proof above.

Now we have a sufficient condition for the existence of invariant measure,

how about uniqueness?

Theorem 3.12. Let ) be irreducible and recurrent, then {P(t)} has an

unique invariant measure up to scalar multiples.

Proof. Since @ irreducible and recurrent, it’s h-skeleton is irreducible and
recurrent. The invariant measure of P(t) is obviously invariant for P(h),

but P(h) has an unique invariant measure. O

3.3.2 Existence and uniqueness of invariant distributions

Firstly, if {P(t)} has an invariant measure A and A ==}, _ ¢ \; < 00, we
defnie

TN :
)\i:X, forallie .

Then ) is an invariant distribution for {P(t)}. Suppose that 7 isrecurrent

now,

JjES jES jES (35)

:Ei/o 1{t<§} dt:Ei(UZ'/\C).
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Note that the chain starting at ¢ will not explode, thus

Z I =Eq(o3), (3.6)

jes
is exactly the expected return time to ¢ when starting from 4, and write

E;o; as m; for short. We shall introduce the following definition .

Definition 3.1. We say a state ¢ is positive recurrent if ¢; = 0, or
m; < 00, and a recurrent state which fails to have this stronger property is

called null recurrent.

Thus, if I has a positive recurrent i, by normalizing I'!, we get an invari-
ant distribution A = % . The next theorem says that positive recurrence is
a class property, and an irreducible chain has invariant distribution iff it is

positive recurrent.

Theorem 3.13. Let Q be irreducible. Then the following are equivalent:
(i) every state is positive recurrent.

(ii) some state i is positive recurrent.

(iii) P(t) has an invariant distribution.

(iv) P(t) has an unique invariant distribution A\ and \; = ﬁ forallie 1.

Proof. (i) = (ii) is obvious.

(ii) = (iii). If 4 is positive recurrent, so @ is recurrent. So I'! is then

ZI‘;:mi<oo.

jel

invariant, and

So\ = m%l“" defines an invariant distribution for P.

(iii) = (iv) = (i). &} e . O
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3.3.3 Jump chain

Note that {P(t)} satisfies the forward equation P’(¢t) = P(t)Q, thus if A
is an invariant measure, AP(t) = A, taking the derivative and supposing the

order of summation and differentiation can be exchanged, we get
AQ = AP(H)Q = AP'(t) = 0.

As we can see, the equation “ MQ = 0 ” describes the balance of & F&.
Thus, it’s natural to ask that, what is the relationship between these two
equations

AQ =0 and, AP(t) =X\ forall ¢.

A first result is that the equation AQ = 0 tie-up with measures invariant

for the jump matrix.

Theorem 3.14. Let (Q be a QQ-matrix with jump matrix II. A\, u be two
measures on I, such that u; = \;q;. Then X is invariant for {P(t)} if and

only if p is invariant for 11.

Proof. Note that g; (m;; — d;5) = ¢ for all i, j, so

(p(II=1)); = Z,ui (15 — 0i5) = Z)\i%’j = (AQ); - -

i€l el

Corollary 3.15. Q) is irreducible, and X is a measure so that AQQ = 0, then
either A =0 or A > 0.

proof. If \; > 0, for any j, since @ is irreducible there exists ¢ = ig, -« , i, =
J so that
Qigiy *** Qin_vin > 0.

Thus Ajg; 2 ANidigi; *** Qi_1i, > 0. -
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Second proof. Let us exclude the trivial case I = {i}. Then we have ¢; > 0
for all ¢ € I. Since p is invariant for II, and II is irreducible, then either

=0 or u >0, so the corollary follows. O

Corollary 3.16. Suppose that Q is irreducible and recurrent. Then @ has

an invariant measure A\ which is unique up to scalar multiples.

Proof. Let us exclude the trivial case I = {i}; then irreducibility forces
g; > 0 for all ©. We have II is irreducible and recurrent, so II has an
invariant measure y, which is unique up to scalar multiples. So, by Theorem
3.14 we can take \; = % to obtain an invariant measure unique up to scalar

multiples. O

We will discussing the following three questions.

e What’s the relationship between the invariant measures for Markov

chain and that for jump chain 7

e What’s the relationship between the invariant distributions for Markov

chain and that for jump chain ?

e If A is a distribution on I, can we use the equation “A@Q = 0” to replace

“AP(t) = A, V7 ?

Theorem 3.17. () is irreducible and recurrent, A\, u are measures on I and

Wi = qiA; for all © € I. Then we have
AP(t)y=Aforallt >0 pll=p< AQ =0. (3.7)

Proof. By Corollary 3.16, Theorem 3.11 and Theorem 1.22, it suffices to

show that ,

) e

r,=-2 (3.8)
4q;j

where, 7} is the expected time in j between visits to i for the jump chain.
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Claim : If @ is irreducible, then (3.8) holds for all 4,5 € I.
)

To see this, denote by ;" ’ the first passage time of the jump chain to state

i. Using Fubini’s theorem we have
Iy =E / Lx,=jy ds =Ei ) Sntilly, <o)
0 n=0 !

:OO A . N\ p. . (v)
7;)IEZQS’HH\Y,Z Jn<o; )P1<Yn J.n <o, )

Le S _ 0
= L e} =

Theorem 3.18. @ is irreducible, then X\, . are measures on I and p; = q;\;

foralli e 1.

o Suppose X is the invariant distribution for { P(t)}, or equivalently, (X;)
is positive recurrent, and p can be normalized, then (Y,,) is positive

recurrent.

o Suppose p is the invariant distribution for 11 | or equivalently, (Y;,)
is positive recurrent, and A can be normalized, then (X;) is positive

recurrent.

Proof. (Xy) is positive recurrent or (Y;,) is positive recurrent both implies

@ is recurrent, so by Theorem 3.17 the desired result is trival. O

Theorem 3.19. @ is irreducible, X is a distribution on I, then
AP(t) =\ for all t & AQ =0 and Q is non-explosive. (3.9)
Proof. If X is the invariant distribution for {P(¢)}, then @ is recurrent, so

@ is non-explosive. By Theorem 3.17, A\Q) = 0 follows.

If AQ = 0, then by Theorem 3.14 y is invariant for II, where u defined
by p; = g;\; for all i. So, in Section 1.5.2 we have shown that

Hi )7} for all ¢,7.
203
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Thus by (3.8),

Sy lieytioy Ao Lo
J

qj ; i ; qiNg

and since @) is non-explosive, by 3.5 we have
m; = ZF; < 0
J

So @ is positive recurrent, and hence recurrent, by Theorem 3.17 X is the

invariant distribution for {P(t)}. O

Counterexamples First we give a counterexample such that we can not

give up the condition that () is non-explosive in Theorem 3.19.

9 EXAMPLE 3.1. @ is irreducible, 7 is a distribution on I, 7QQ = 0 but Q

1s explosive.

Consider the birth-death process with the following diagram, where g; ;11 =

2 x 3* and Gii—1 = 3¢ for i > 1. By detailed balance condition, we can find

o1 Qii-1 Qi+l

0 1 1—1 1 t+1

Figure 3.1: Birth-death process

the (unique) invariant distribution

1 /2\
7TZ':3X<3> , foralli>0.

However, we show that the Markov chain (X3):>0 will explode when starting

at 0. Firstly, denote aY)

;i the Green function of the jump chain (Y,,) at state
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1, then

g_/o 1{t<<}dt_/0 Zl{Xt:i}dt—Z/o Lix,—pdt.

Thus

o0 o™
Eo = ZEO/O Lix,—iydt = ZEV = Z q .

It’s easy to find that {G )}Z>0 are uniformly bounded, thus Eo¢ < oo and

@ is explosive.

¥ EXAMPLE 3.2. @ is irreducible and positive recurrent, but Il is null re-

current.

Consider the birth-death chain (Y, n)n>0 with the following diagram, where

bozl,blzdl 2andb_2Z 1,d_ fOI"Z>2
d by d; bi dit1 bip
0 1 1 141

Figure 3.2: brith-death chain

Firstly, note that d; > b; for ¢ > 2, so (Y,)n>0 is recurrent by Example
1.14. To show it is null recurrent, we use detailed balanced conditions,

i 1—2 .

'ﬂ'iﬁ:ﬂ'iflm, fOI'Z>3.

SO

i k 22k—1 2 21 —1 1
—H - X =Ul(~
2k —3 z(z—l) 3 i

Thus ), m; = oo, (Yn)n>0 is null recurrent.

However, Let (Y},) be the jump chain of (X;);>0 and ¢; = for all i > 1

the invariant distribution of (X;)¢>0 is \; = % = %1, so we have
1

Ao 2 2 2i — 1

1
» oy X3 9%
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Thus ), A < 00, (X)=0 is positive recurrent.

¥ EXAMPLE 3.3. Q is irreducible and null recurrent, but Il is positive re-
current.

Let (Y;,)n>0 be a positive recurrent birth-death chain with invariant dis-
tribution 7. Let (Y;,) be the jump chain of (X;);>¢ and ¢; = m; for all ¢ > 0.
Then A; = 7} = 1 is an invariant measure for {X;}, and therefore {X;} is

null recurrent.
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3.4 Time reversal

Time reversal of continuous-time chains has the same features found in
the discrete-time case. Reversibility provides a powerful tool in the analysis
of Markov chains, as we shall see in Section 3.6. Note in the following
result how time reversal interchanges the roles of backward and forward
equations. This echoes our proof of the forward equation, which rested on

the time reversal identity of Lemma 2.23.

A small technical point arises in time reversal: right-continuous processes
become left-continuous processes. For the processes we consider, this is
unimportant. We could if we wished redefine the time-reversed process
to equal its right limit at the jump times, thus obtaining again a right-
continuous process. We shall suppose implicitly that this is done, and forget

about the problem.

Theorem 3.20. Let ) be irreducible and non-explosive and suppose that ()
has an invariant distribution X. Let T' € (0, 00) be given and let (X)o7 be
Markov(\, Q). Set X; = Xp_;. Then the process (Xt)ggth is Markov (A, CA)),
where @ = (qAU)i,jEI is given by \iGi; = Ajq;i. Moreover, @ is also irreducible

and non-explosive with invariant distribution .

Proof. Clearly, (Xt)ogtgff is minimal right-continuous process with values

inl. For 0 <tg<- - <tpy1 < T, we have
]P(th.H :] ’ th :i,Xto :iO)"' 7th_1 — Z.nfl)

=P (Xr—t,y =J | Xr—t, =i, Xty =0, X7ty = in—1)

Aipji(tns1 — tn)
A '

=P (X7t = | X7, = 10) =
Define ﬁ(t) = (pij(t))ijer by

)\Z]/)\U(t) = )\jpji(t) for all i,j S I,
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then ]3(t) is an irreducible stochastic matrix with invariant distribution A

and we can rewrite the forward equation of {P(t)} transposed as
P'(t)=QP(t).

But this is the backward equation for @, which is itself a )-matrix, and P (t)
is then its minimal non-negative solution. Hence (X;)o<i<r is Markov(), Q).

The chain (X;)o<i<r is called the time-reversal of (Xt)o<icr- O

Reversibility and detailed balance Let (X;),., be Markov (A, @),
with @ irreducible and non-explosive. We say that (Xt)t>0 is reversible if,
for all T > 0, (X7-¢)o;<r is also Markov(, Q).

A Q-matrix @) and a measure A are said to be in detailed balance if
)\iQij = )\jq]'i for all i,j .
Clearly, If @ and X are in detailed balance then A\Q = 0.

Theorem 3.21. Let QQ be an irreducible and non-explosive Q-matrix and
let A be a distribution. Suppose that (Xt),5 is Markov(A, Q). Then the

following are equivalent:
(i) (Xt)ysq is reversible;
(ii) @ and X\ are in detailed balance.

Proof. Both (i) and (ii) imply that A is invariant for . Then both (i) and
(ii) are equivalent to the statement that @ = (Q in Theorem 3.20. O
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3.5 Long-run behavior

We now investigate the limiting behaviour of p;;(t) as t — oo and its
relation to invariant distributions. You will see that the situation is analo-
gous to the case of discrete-time, only there is no longer any possibility of
periodicity. We shall need the following estimate of uniform continuity for

the transition probabilities.

3.5.1 Ergodic theorem

Long-run averages for continuous-time chains display the same sort of
behaviour as in the discrete-time case, and for similar reasons. Here is the

result.

Theorem 3.22 (Ergodic theorem). Let @) be irreducible and let \ be
any distribution. (Xt),q is Markov(A, Q), then as t — oo,

1 t
t/o 1{Xs=i} ds —

where m; = E; (0;) is the expected return time to state i.

1

qim;

a.s.

Proof. Suppose ¢q; > 0 for all ¢ € I. If @ is transient then the total time

spent in any state i is finite, clearly

I 1 [
t/ 1{X,:i} ds < t/ 1{X,:z'} ds - 0=
0 0

Suppose then that @ is recurrent and fix a state i. Then (Xt)tzo hits 7 with

qimy;

probability 1 and the long-run proportion of time in ¢ equals the longrun
proportion of time in 7 after first hitting ¢. So, by the strong Markov property
(of the jump chain), it suffices to consider the case A = §;.

Denote by Ti(n) the time of the n th return to i, and by Mi(n) the length
of the n th visit to ¢. That is, for n € N, setting TZ-(O) = 0, we have

)

MY~ {e > 1 X £ -1,

T+ — inf{t > Ti(n) + Mi(nﬂ) Xy = 2} .

7
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Now, for TZ-(") <t< TZ»(nH) we have

(D) <3 . Lix=ipds < :

Denote by Lgn) the length of the n th excursion to ¢, that is,

) % %
By the strong Markov property (of the jump chain) at the stopping times
Ti(n) for n € N, we find that Lgl), LZ(-Q), -+ are independent and identically
distributed with mean m;, and that MZA(I),]WZ@)7 -+ are independent and
1

identically distributed with mean Hence, by the strong law of large

numbers, as n — 0o

SRR /S A
n o n

M(1)+...+Mi(”) 1
— — a.s.

— m; a.s.

and hence

— a.s.
T.(") miq;

So on letting ¢ — co we have, with probability 1

1/t 1
/ 1{X,:i} ds — . O
0

t miq;

Corollary 3.23. Let () be irreducible and positive recurrent with the in-
variant distribution A. (Xt),o is Markov(\,Q), f : I — R is a bounded

function. Then as t — oo,

1/Otf(Xs)ds—>/Ifd)\ a.s.

Proof. In the positive recurrent case we can write

I [t
t e | =3 (7 [ 1oxemnds =)
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where \; = ﬁ We conclude that

1/()tf(X5)ds—>/Ifd)\ as t — oo

with probability 1, by the same argument as was used in the proof of The-
orem 1.35. ]

3.5.2 Convergence to equilibrium

Theorem 3.24 (Convergence to equilibrium). Let Q) be an irreducible
non-explosive Q-matrix with semigroup {P(t)}, and having an invariant

distribution \. Then for all states i,j we have
pij(t) = A; as t—o0.

Proof. Let (Xt);>q be Markov (6;, Q). Fix h > 0 and consider the h-skeleton
Zyn = Xpp. Then
P(Zny1 =7 Zn=1,20 =0, , Zn-1 =in-1) = pi(h)

80 (Zn),>¢ s discrete-time Markov(d;, P(h)). By Theorem 3.1 irreducibility
implies p;j(h) > 0 for all 4,j so P(h) is irreducible and aperiodic. Clearly,
A is invariant for P(h). So, by discrete-time convergence to equilibrium, for
alli,jel

pij(nh) = A; as n —o0.

Thus we have a lattice of points along which the desired limit holds; we fill
in the gaps using uniform continuity, Proposition 2.19. Fix a state 7, given

e > 0 we can find ~ > 0 so that
1—e*ql‘t§§ for 0 <t<h
and then find NN, so that
Ipij(nh) — Xj| <€/2  forn >N
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For t > Nh we have nh <t < (n+ 1)h for some n > N and
Pij () = Ajl < pij () — pij(nh)| + [pij(nh) — Xj| < e
by Proposition 2.19. Hence
pij(t) = A; as n—oo. O

The complete description of limiting behaviour for irreducible chains in
continuous time is provided by the following result. We do not give the

details.

Theorem 3.25. Let () be an irreducible non-explosive Q-matrix and let A
be any distribution. Suppose that (X¢)i=0 is Markov(\, Q). Then for all

states @
1

qim;

Proof. Let (Y,,)n>0 be the embedded chain, and let

P(X;=1i) — as t—00.

o) = inf{n >1:Y, =i}.

(2

It follows from Theorem 1.41, by the same argument we used in the proof
Theorem 3.24,

. 1
P(Xt = Z) — W
E;o;
Note that m; = E;o; = iEial(Y), we have completed the proof now. O
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3.6 Queues and queueing networks

Queues form in many circumstances and it is important to be able to
predict their behaviour. The basic mathematical model for queues runs as
follows: there is a succession of customers wanting service; on arrival each
customer must wait until a server is free, giving priority to earlier arrivals; it
is assumed that the times between arrivals are independent random variables
of the same distribution, and the times taken to serve customers are also

independent random variables, of some other distribution.

The main quantity of interest is the random process (Xt)t>o recording
the number of customers in the queue at time ¢. This is always taken to

include both those being served and those waiting to be served.

In cases where inter-arrival times and service times have exponential
distributions, (X¢);>0 turns out to be a continuous-time Markov chain, so

we can answer many questions about the queue.

In each example we shall aim to describe some salient features of the
queue in terms of the given data of arrival-time and service-time distribu-

tions.

o We shall find conditions for the stability of the queue .

e In the stable case find means to compute the equilibrium distribution

of queue length.

o We shall also look at the random times that customers spend waiting

and the length of time that servers are continuously busy.

¥ ExaMmpLE 3.4 (M/M/1 queue). This is the simplest queue of all. The code
means: memoryless inter-arrival times/memoryless service times/one server.
Let us suppose that the inter-arrival times are exponential of parameter A,
and the service times are exponential of parameter y. Then the number of
customers in the queue (X¢), evolves as a Markov chain with the following

diagram:
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A HA T WY
0 1 i i+l

o The M/M/1 queue thus evolves like a random walk, except that it
does not take jumps below 0. We deduce that

(i) if A > p then (X;),5, is transient, that is X; — oo as t — oo.

Thus if A > p the queue grows without limit in the long term ;

(ii) when A < p, (Xi)s is positive recurrent with invariant distri-

Wi_(l—)\> <)\> , fori>0.
w) \p

e When A\ < the average number of customers in the queue in equilib-

bution

rium is given by

EW(Xt)—glP’W(Xt>i)—i()\>i—Mi)\.

i=1 H

e Also, the mean time to return to 0 is given by

1 p
0= = )
qgomo  Alp—A)
so the mean length of time that the server is continuously busy is given
by

m

1 1
my— — = ——.
Qo K= A

o Another quantity of interest is the mean waiting time for a typical

customer, when A < p and the queue is in equilibrium. Conditional

on finding a queue of length 7 on arrival, this is %, so the overall

mean waiting time is

Er (X¢+1) 1

[ =X
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Thus, once the queue size is identified as a Markov chain, its behaviour
is largely understood. Even in more complicated examples where exact
calculation is limited, once the Markovian character of the queue is noted we
know what sort of features to look for transience and recurrence, convergence

to equilibrium, long-run averages, and so on.

¢ ExampLE 3.5 (M/M/s queue). This is a variation on the last example
where there is one queue but there are s servers. Let us assume that the
arrival rate is A and the service rate by each server is p. Then if ¢ servers
are occupied, the first service is completed at the minimum of ¢ indepen-
dent exponential times of parameter . The first service time is therefore
exponential of parameter iy. The total service rate increases to a maximum
sy when all servers are working. We emphasise that the queue size includes
those customers who are currently being served. The queue size (Xi),q
performs a Markov chain with the following diagram:

A K /\Q’UQ\ SN sp A

- - -

0 1 2 8 s+1

So this time we obtain a birth-and-death chain. It is transient in the
case A\ > su and otherwise recurrent. To find an invariant measure we look

at the detailed balance equations

TiQii+1 = Ti4+1Gi4+14

Hence 1
—(5) fori=0,1,---,s
)il
T 1A
o (=) forizs+1.
st8sl

The queue is therefore positive recurrent when A < su. There are two cases
when the invariant distribution has a particularly nice form: when s = 1

we are back to Example 3.4 and the invariant distribution is geometric of
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parameter % :

and the invariant distribution is Poisson of parameter %

The number of arrivals by time ¢ is a Poisson process of rate A\. Each
arrival corresponds to an increase in X;, and each departure to a decrease.
Let us suppose that A < sy, so there is an invariant distribution, and con-
sider the queue in equilibrium. The detailed balance equations hold and
(Xt);50 is non-explosive, so by Theorem 3.21 for any T' > 0, (X;);<p and
(X7—t)g<s<7 have the same law. It follows that, in equilibrium, the number
of departures by time ¢ is also a Poisson process of rate A. This is slightly
counter-intuitive, as one might imagine that the departure process runs in
fits and starts depending on the number of servers working. Instead, it turns
out that the process of departures, in equilibrium, is just as regular as the

process of arrivals.

¢ ExAMPLE 3.6 (Telephone exchange). A variation on the M/M/s queue is
to turn away customers who cannot be served immediately. This might serve
as a simple model for a telephone exchange, where the maximum number of
calls that can be connected at once is s: when the exchange is full, additional
calls are lost. The maximum queue size or buffer size is s and we get the

following modified Markov chain diagram :

XM Ao 20 A (s—=Dp X su

> -

We can find the invariant distribution of this finite Markov chain by

solving the detailed balance equations, as in the last example. This time we
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get a truncated Poisson distribution

)\/M /Z

By the ergodic theorem, the long-run proportion of time that the exchange

fOI"Z—O

is full, and hence the long-run proportion of calls that are lost, is given by

)\/M /Z )\//l
7=0

This is known as Erlang’s formula. ©

¥ ExaMPLE 3.7 (Queues in series). Suppose that customers have two ser-
vice requirements: they arrive as a Poisson process of rate A to be seen
first by server A, and then by server B. For simplicity we shall assume
that the service times are independent exponentials of parameters a and 3

respectively. What is the average queue length at B?

Let us denote the queue length at A by (X;), and that by B by (¥;),5
Then (X¢),5 is simply an M/M/1 queue. If A > «, then (X;), is transient
so there is eventually always a queue at A and departures form a Poisson
process of rate a. If A < «, then, by the reversibility argument of Example
3.5, the process of departures from A is Poisson of rate A, provided queue
A is in equilibrium. The question about queue length at B is not precisely
formulated: it does not specify that the queues should be in equilibrium;

indeed if A > « there is no equilibrium.

Nevertheless, we hope you will agree to treat arrivals at B as a Poisson
process of rate a A X\. Then, by Example 3.4, the average queue length at
B when oo A X < 3, in equilibrium, is given by (a« A X)/(8 — (a A N)). If, on
the other hand, a AA > B, then (%), is transient so the queue at B grows
without limit.

© FU R AE B LR B 5 T
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There is an equilibrium for both queues if A < « and A < 5. The fact that
in equilibrium the output from A is Poisson greatly simplifies the analysis
of the two queues in series. For example, the average time taken by one
customer to obtain both services is given by

LI
a—X B\
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