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Chapter 1

Discrete-time Markov chains

In this note, we denote by N all the non-negative integers, i.e., N =

{0, 1, 2, · · · }. Denote by N+ all the positive integer. We work throughout
with a probability space (Ω,F ,P).

1.1 Introductions

1.1.1 Definition and basic properties

Let I be a countable set. Each i ∈ I is called a state and I is called the
state-space. We say that λ = (λi)i∈I is a measure on I if 0 ⩽ λi < ∞ for
all i ∈ I. If in addition the total mass

∑
i∈I λi equals 1, then we call λ a

distribution.

Recall that a random variable X with values in I is a function X : Ω → I.
If we set

λi = P(X = i) = for each i ∈ I

Then λ defines a distribution, the distribution of X. We think of X as
modelling a random state which takes the value i with probability λi.

We say that a matrix P = (pij)i,j∈I is stochastic if every row (pij) :j∈I

is a distribution. We shall now formalize the rules for a Markov chain by a
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definition in terms of the corresponding matrix P .

We say (Xn)n⩾0 is Markov chain with initial distribution λ and tran-
sition matrix P , if X0 has distribution λ and for any n ∈ N, conditional on
Xn = i, Xn+1 has distribution (pij)j∈I and is independent of X0, · · · , Xn−1.
More explicitly, these conditions state that

(i) for any i ∈ I, P (X0 = i) = λi.

(ii) for any n ⩾ 1 and j, i, i0, · · · , in−1 in I.

P (Xn+1 = j | Xn = i,X0 = i0, · · · , Xn−1 = in−1)

= P (Xn+1 = j | Xn = i) = pij .

We say that (Xn)n⩾0 is Markov(λ, P ) for short. In formulating (ii) we have
restricted our attention to the temporally homogeneous case in which the
transition probability P (Xn+1 = j | Xn = i) does not depend on the time n.

It is in terms of properties (i) and (ii) that most real-world examples are
seen to be Markov chains. But mathematically the following result appears
to give a more comprehensive description, and it is the key to some later
calculations.

Theorem 1.1. A discrete-time random process (Xn)n⩾0 is Markov(λ, P ) if
and only if for any n ⩾ 1 and i1, · · · , in ∈ I,

P (X0 = i1, X1 = i2, · · · , Xn = in) = λi1pi1i2pi2i2 · · · pin−1in .

Proof. Note that for any n ⩾ 1 and i0, · · · , in+1 in I,

P (Xn+1 = in+1 | X0 = i1, · · · , Xn = in)

=
P (X0 = i1, · · · , Xn = in, Xn+1 = in+1)

P (X0 = i1, · · · , Xn = in)
= pinin+1 .
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The next result reinforces the idea that Markov chains have no memory.
We write δi = (δij)j∈I for the unit mass at i, where

δij =

{
1 if i = j

0 otherwise.

Theorem 1.2 (Markov property). Let (Xn)n⩾0 be Markov(λ, P ). Then,
conditional on Xm = i, (Xm+n)n⩾0 is Markov(δi, P ), and is independent of
the random variables X0, · · · , Xm.

Proof. It usffices to show that for any event A ∈ σ(X0, · · · , Xm), and
im, · · · , im+n in I,

P ({Xm = im, · · · , Xm+n = im+n} ∩A | Xm = i)

= δiimpimim+1 · · · pim+n−1im+nP (A | Xm = i)
(1.1)

Since ∪∞
n=1σ(Xm, · · · , Xm+n) is a π-systerm generating σ (Xm+n)n⩾0, (1.1)

implies the desired result. By the same reason, we only need to consider the
case of elementary events

A = {X0 = i1, · · · , Xm = im} .

Note that

P (X0 = i1, · · · , Xm+n = im+n)

= δiimpimim+1 · · · pim+n−1im+n × P (X0 = i1, · · · , Xm = im) ,

Which follows from Theorem 1.1.

1.1.2 Multistep transition probabilities

Assume (Xn)n⩾0 is Markov chain with transition matrix P . The transi-
tion probability pij = P (Xn+1 = j | Xn = i) gives the probability of going
from i to j in one step. Our goal in this section is to compute the probability
of going from i to j in n steps:

p
(n)
ij = P (Xn+m = j | Xm = i)

3



By Markov property, the definition above is independent of m. We denote
P (n) :=

(
p
(n)
ij

)
i,j∈I , and call it the n step transition matrix.

Proposition 1.3 (Chapman-Kolmogorov equation). For any n,m ∈
N+, P (m+n) = P (m)P (n). In other words, for any i, j ∈ I,

p
(m+n)
ij =

∑
k∈I

p
(m)
ik p

(n)
kj .

Proof. We do this by breaking things down according to the state at time
m.

Pi (Xm+n = j) =
∑
k∈I

Pi(Xm = k)Pi (Xm+n = j | Xm = k)

By Markov property, Pi (Xm+n = j | Xm = k) = p
(n)
kj , thus we get the C-K

equation.

Note that P (1) = P , by induction we get:

Corollary 1.4. For all n ∈ N+, P (n) = Pn. In other words, for any i, j ∈ I,

p
(n)
ij =

∑
i1,··· ,in−1∈I

pii1pi1i2 · · · pin−1j .

Corollary 1.5. Let (Xn)n⩾0 be Markov(λ, P ), then for any n the distribu-
tion of Xn is λPn, where we regard distributions ( and measures) as row
vectors whose components are indexed by I.

1.1.3 Class structure

It is sometimes possible to break a Markov chain into smaller pieces,
each of which is relatively easy to understand, and which together give an
understanding of the whole. This is done by identifying the communicating
classes of the chain.
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Let (Xn)n⩾0 be a Markov chain with transition matrix P . Define the
hitting time of state j is a random variable Ω → {0, 1, 2, · · · } ∪ {∞} and
given by

τj := inf{n ⩾ 0 : Xn = j} .

where we agree that the infimum of the empty set ∅ is ∞.

We say that i leads to j and write i → j if

Pi (τj < ∞) > 0 .

We say i communicates with j and write i ↔ j if both i → j and j → i.

Proposition 1.6. For distinct states i and j, i leads to j is and only if
p
(n)
ij > 0 for some n ⩾ 0.

Proof. Observe that for given n ∈ N,

p
(n)
ij ⩽ Pi (τj < ∞) ⩽

∞∑
n=0

p
(n)
ij .

Then the desired result follows.

Clearly, from Proposition 1.6 we see that i → j and j → k imply i → k.

Also i → i forany state i. So “↔” satisfies the conditions for an equivalence
relation on I, and thus partitions I into communicating classes.

Definition 1.1. We say that a nonempty set A ⊂ I is closed if it is impos-
sible to get out, i.e., for any i ∈ A, i → j implies that j ∈ A. A state i ∈ I

is absorbing if {i} is a closed class.

Remark. It’s easy to see that A ⊂ I be closed, then for any communicating
class C, either C ⊂ A or C ∩A = ∅.

Definition 1.2. A chain or transition matrix P is called irreducible, if I
is a single communicating class, i.e., any two state communicate with each
other.
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Proposition 1.7. I is irreducible if and only if all the nonempty proper
subset of I is not closed.

Proof. If A ⫋ I is closed, pick i ∈ I\A and j ∈ A, then [i] ∩ [j] = ∅. I has
at least two communicating class, so is reducible.

If I is irreducible, for any nonempty proper subset A. Pick any i /∈ A,
j /∈ A, since I is irreducible, i leads to j. Thus A is not closed.

The advantage of closed set is that we can reduce the state sapce. Sup-
pose A is closed, then for all i ∈ A,

Pi (Xn ∈ A, ∀n ∈ N) = 1 .

Thus P |A = (pij)i,j∈A is a transition matrix. If P(X0 ∈ A) = 1, then, in
fact, (Xn)n⩾0 is a Markov chain with transition matrix P |A. In addition, if
A is a class, then P |A is irrducible.

EXERCISE

¶ Exercise 1.1. Show that every transition matrix on a finite state-space
has at least one closed communicating class. Find an example of a transition
matrix with no closed communicating class.
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1.2 First step analysis

Let (Xn)n⩾0 be a Markov chain with transition matrix P. The hitting
time of A ⊂ I is the random variable τA : Ω → {0, 1, 2, · · · } ∪ {∞} given by

τA = inf {n ⩾ 0 : Xn ∈ A} ,

where we agree that the infimum of the empty set ∅ is ∞. The probability
starting from i that (Xn)n⩾0 ever hits A is then

hi = Pi (τA < ∞) .

When A is a closed class, hi is called the absorption probability. The mean
time taken for (Xn)n⩾0 to reach A is given by

ti = Ei (τA) =
∞∑
n=0

nPi (τA = n) +∞Pi (τA = ∞) .

We shall often write less formally

hi = Pi( hit A), ti = Ei( time to hit A) .

1.2.1 Hitting probabilities

Theorem 1.8. The vector of hitting probabilities (hi)i∈I is the minimal
non-negative solution to the system of linear equations{

hi = 1, for i ∈ A.

hi =
∑

j∈I pijhj , for i /∈ A.
(1.2)

(Minimality means that if x = (xi)i∈I is another solution with xi ⩾ 0 for all
i, then xi ⩾ hi for all i. )

Proof. First we show that (hi)i∈I satisfies (1.2). Clearly, if X0 = i ∈ A, then
τA = 0, so hi = 1.

If X0 = i /∈ A, then τA ⩾ 1,

hi = Pi (τA < ∞) =
∑
j∈I

pij Pi (τA < ∞ | X1 = j) ,
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by the Markov property

Pi (τA < ∞ | X1 = j) = Pi (τA − 1 < ∞ | X1 = j) = Pj (τA < ∞) = hj .

Thus when i /∈ A,
hi =

∑
j∈I

pij hj .

This method is called sometimes first step analysis.

Suppose now that x = (xi)i∈I is any solution to (1.2). Then hi = xi = 1

for i ∈ A. For i /∈ A,

xi =
∑
j∈I

pijxj =
∑
j∈A

pij +
∑
j /∈A

pijxj

Substitute for xj to obtain

xi =
∑
j∈A

pij +
∑
j /∈A

pij

(∑
k∈A

pjk +
∑
k/∈A

pjkxk

)

= Pi (X1 ∈ A) + Pi (X1 /∈ A,X2 ∈ A) +
∑
j /∈A

∑
k/∈A

pijpjkxk .

By repeated substitution for x in the final term we obtain after n steps

xi = Pi (X1 ∈ A) + · · ·+ Pi (X1 /∈ A, · · · , Xn−1 /∈ A,Xn ∈ A)

+
∑
j1 /∈A

· · ·
∑
jn /∈A

pij1pj1j2 · · · , pjn−1jnxjn .

Now if x is non-negative, so is the last term on the right, and the remaining
terms sum to Pi (τA ⩽ n) . So xi ⩾ Pi (τA ⩽ n) for all n and then

xi ⩾ lim
n→∞

Pi (τA ⩽ n) = Pi (τA < ∞) = hi.

Remark. In fact, using first step analysis, we have∑
k∈I

pikPk(τA < ∞) = Pi(σA < ∞), for all i ∈ I.

where σA := inf{n ⩾ 1 : Xn ∈ A}, is called the first passage time of A.
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16 1. Discrete-time Markov chains

and again the restriction 0 ≤ hi ≤ 1 forces B = 0, so hi = 1 for all i.
Thus, even if you find a fair casino, you are certain to end up broke. This
apparent paradox is called gamblers’ ruin.

Example 1.3.4 (Birth-and-death chain)

Consider the Markov chain with diagram

0 1 i i+ 1

d1 di bi di+1b1 bi+1

where, for i = 1, 2, . . . , we have 0 < pi = 1 − qi < 1. As in the preceding
example, 0 is an absorbing state and we wish to calculate the absorption
probability starting from i. But here we allow pi and qi to depend on i.

Such a chain may serve as a model for the size of a population, recorded
each time it changes, pi being the probability that we get a birth before
a death in a population of size i. Then hi = Pi(hit 0) is the extinction
probability starting from i.

We write down the usual system of equations

h0 = 1,

hi = pihi+1 + qihi−1, for i = 1, 2, . . . .

This recurrence relation has variable coefficients so the usual technique fails.
But consider ui = hi−1 − hi, then piui+1 = qiui, so

ui+1 =
(
qi
pi

)
ui =

(
qiqi−1 . . . q1
pipi−1 . . . p1

)
u1 = γiu1

where the final equality defines γi. Then

u1 + . . .+ ui = h0 − hi

so
hi = 1 −A(γ0 + . . . + γi−1)

where A = u1 and γ0 = 1. At this point A remains to be determined. In
the case

∑∞
i=0 γi = ∞, the restriction 0 ≤ hi ≤ 1 forces A = 0 and hi = 1

for all i. But if
∑∞

i=0 γi <∞ then we can take A > 0 so long as

1 − A(γ0 + . . .+ γi−1) ≥ 0 for all i.

Figure 1.1: brith-death chain

¶ Example 1.2 (Birth-death chain). Consider the Markov chain with di-
agram in Figure 1.1 where, for i = 1, 2, · · · , we have 0 < bi = 1 − di < 1.
Let p01 = 1. we wish to calculate the absorption probability starting from i.
Such a chain may serve as a model for the size of a population, recorded each
time it changes, bi being the probability that we get a birth before a death
in a population of size i. Then hi = Pi( hit 0) is the extinction probability
starting from i.

We write down the usual system of equations

h0 = 1

hi = bihi+1 + dihi−1, for i = 1, 2, · · ·

This recurrence relation has variable coefficients so the usual technique fails.
But consider ui = hi−1 − hi, then biui+1 = diui, so

ui+1 =

(
di
bi

)
ui =

(
didi−1 · · · d1
bibi−1 · · · b1

)
u1 = γi u1

where the final equality defines γi for i ⩾ 1. Then u1+ · · ·+ui = h0−hi, so

hi = 1− u1 (γ0 + · · ·+ γi−1) = 1−Ri−1

where γ0 = 1, and where the final equality defines Ri−1. At this point u1

remains to be determined.

(i) In the case R :=
∑∞

i=0 γi = ∞, the restriction 0 ⩽ hi ⩽ 1 forces u1 = 0

and hi = 1 for all i ⩾ 0.
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(ii) But if R =
∑∞

i=0 γi < ∞, then we can take u1 > 0 so long as hi ⩾ 0,
that is u1 ⩽ 1

R . Thus the minimal non-negative solution occurs when
u1 =

1
R and then

hi = 1− Ri

R

In this case, for i = 1, 2, · · · , we have hi < 1, so the population survives
with positive probability.

¶ Example 1.3 (Gamblers’ ruin). Consider the Markov chain with diagram
in Figure 1.2, where 0 < p = 1− q < 1. The transition probabilities are

pi,i−1 = q, pi,i+1 = p for i = 1, 2, · · ·

Imagine that you enter a casino with a fortune of £1 and gamble, £1 at a
time, with probability p of doubling your stake and probability q of losing
it. The resources of the casino are regarded as infinite, so there is no upper
limit to your fortune. But what is the probability that you leave broke?

20 1. Discrete-time Markov chains

(c) The last exit time

LA = sup{n ≥ 0 : Xn ∈ A}

is not in general a stopping time because the event {LA = n} depends on
whether (Xn+m)m≥1 visits A or not.

We shall show that the Markov property holds at stopping times. The
crucial point is that, if T is a stopping time and B ⊆ Ω is determined by
X0,X1, . . . ,XT , then B ∩ {T = m} is determined by X0,X1, . . . ,Xm, for
all m = 0, 1, 2, . . . .

Theorem 1.4.2 (Strong Markov property). Let (Xn)n≥0 be

Markov(λ,P ) and let T be a stopping time of (Xn)n≥0. Then, conditional

on T < ∞ and XT = i, (XT+n)n≥0 is Markov(δi, P ) and independent of

X0,X1, . . . ,XT .

Proof. If B is an event determined by X0,X1, . . . ,XT , then B ∩ {T = m}
is determined by X0,X1, . . . ,Xm, so, by the Markov property at time m

P({XT = j0,XT+1 = j1, . . . ,XT+n = jn} ∩B ∩ {T = m} ∩ {XT = i})
= Pi(X0 = j0,X1 = j1, . . . ,Xn = jn)P(B ∩ {T = m} ∩ {XT = i})

where we have used the condition T = m to replace m by T . Now sum over
m = 0, 1, 2, . . . and divide by P(T <∞,XT = i) to obtain

P({XT = j0,XT+1 = j1, . . . ,XT+n = jn} ∩B | T <∞,XT = i)

= Pi(X0 = j0,X1 = j1, . . . ,Xn = jn)P(B | T <∞,XT = i).

The following example uses the strong Markov property to get more
information on the hitting times of the chain considered in Example 1.3.3.

Example 1.4.3

Consider the Markov chain (Xn)n≥0 with diagram

0 1 i i+ 1

q q qpp p

Figure 1.2: gamblers’ ruin

Set hi = Pi( hit 0), then h is the minimal non-negative solution to

h0 = 1

hi = phi+1 + qhi−1, for i = 1, 2, · · ·

Now we can see this model is particular case of brith-death chain(We dont’s
care the transition probability in state 0). So by Example 1.2,

R =
∞∑
i=0

(
q

p

)i

.

(i) If p > q, the solution is hi = ( qp)
i. for all i ⩾ 0.
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(ii) If p < q, which is the case in most successful casinos, we have hi = 1

for all i. Even if p = q, i.e., you find a fair casino, you are certain to
end up broke (But the mean breaking time is infinity, which we will
see later). This apparent paradox is called gamblers’ ruin.

¶ Example 1.4 (带时滞的生灭链). 考虑 N 上的马氏链，给定 c ⩾ 0, α ⩾ 0. 令
p01 = 1, 对任意 i ⩾ 1,

pi,i+1 =
1

2
, pi,i−1 =

exp (−ci−α)

2
, pii =

1− exp (−ci−α)

2

我们来计算这个带有 “时滞” 的生灭链的灭绝概率. 令 hi := Pi(τ0 < ∞), 则

hi = pi,i+1hi+1 + pi,i−1hi−1 + piihi

等式两边同时减去 hi, 得到

hi − hi+1 =
pi,i−1

pi,i+1
(hi−1 − hi)

将 pi,i+1 看为 bi, 将 pi,i−1 视为 di, 则从生灭链的灭绝概率计算中我们知道, hi 全

为 1 当且仅当 R = ∞, 其中

R = 1 +

∞∑
k=1

exp

−c

k∑
j=1

j−α

 .

1.2.2 Mean hitting times

Theorem 1.9. The vector of mean hitting times (ti)i∈I is the minimal non-
negative solution to the system of linear equations{

ti = 0, for i ∈ A.

ti = 1 +
∑

j /∈A pijtj , for i /∈ A.
(1.3)

Proof. First we show that (ti)i∈I satisfies (1.3). If X0 = i ∈ A, then τA = 0,

so ti = 0.

If X0 = i /∈ A, then τA ⩾ 1, so, by the Markov property,

Ei (τA | X1 = j) = 1 + Ei (τA − 1 | X1 = j) = 1 + Ej (τA) ,
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and
ti = Ei (τA) =

∑
j∈I

Ei (τA | X1 = j)

= Pi (X1 = j) = 1 +
∑
j /∈A

pijtj .

Suppose now that y = (yi)i∈I is any solution to (1.3). Then ti = yi = 0 for
i ∈ A. For i /∈ A,

yi = 1 +
∑
j /∈A

pijyj

= 1 +
∑
j /∈A

pij

(
1 +

∑
k/∈A

pjkyk

)

= Pi (τA ⩾ 1) + Pi (τA ⩾ 2) +
∑
j /∈A

∑
k/∈A

pijpjkyk

By repeated substitution for y in the final term we obtain after n steps

yi = Pi (τA ⩾ 1) + · · ·+ Pi (τA ⩾ n) +
∑
j1 /∈A

· · ·
∑
jn /∈A

pij1pj1j2 · · · pjn−1jnyjn

So, if y is non-negative,

yi ⩾ Pi (τA ⩾ 1) + · · ·+ Pi (τA ⩾ n)

and, letting n → ∞

yi ⩾
∞∑
n=1

Pi (τA ⩾ n) = Ei (τA) = ti

Remark. In fact, using first step analysis, we find that

1 +
∑
k∈I

pikEk(τA) = Ei(σA), for all i ∈ I ,

where σA := inf{n ⩾ 1 : Xn ∈ A}.
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EXERCISE

¶ Exercise 1.5. Let A,B ⊂ I and A ∩ B = ∅. Let xi be the probability
starting from i that (Xn)n⩾0 hits A before hitting B. In other words,

xi := Pi(τA < τB) , for any i ∈ I .

(i) Sohw that ∑
j∈I

pijPi(τA < τB) = Pi(σA < σB) .

(ii) Show that (xi)i∈I is the minimal non-negative solution to the system
of linear equations

xi = 1, for i ∈ A.

xi = 0, for i ∈ B.

xi =
∑

j∈I pijxj , for i /∈ A,B.

¶ Exercise 1.6. Let Gij = Ei(Vj). (The definition of Vj is given by (1.4.2)
)

(i) Using first step analysis, show that for any j is fixed, (Gij)i∈I is the
minimal non-negative solution to the system of linear equations

Gij =
∑
k∈I

pikGkj + δij .

(ii)∗ Using cycle trick, show that for i is fixed, (Gij)j∈I is the solution to
the system of linear equations

Gij =
∑
k∈I

Gikpkj + δij .

In fact, that is G = PG+ I = GP + I, or G = (I − P )−1. We can see this
from G =

∑∞
n=0 P

n.
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¶ Exercise 1.7. A ⊂ I. Let

GA
ij := Ei

( ∑
0⩽n<τA

1{Xn=j}

)

(称为区域格林函数, 见 Oct 8 课堂笔记). Show that
GA

ij = 1, for i ∈ A or j ∈ A.

GA
ij =

∑
k/∈A pik G

A
kj + δij

=
∑

k/∈A GA
ik pkj + δij , for i, j /∈ A.

(1.4)

In fact that is GA|Ac = GA|AcP |Ac + I|Ac = P |AcGA|Ac + I|Ac . Then GA|Ac =

(I|Ac − P |Ac)−1. We can see this from GA|Ac =
∑∞

n=0(P |Ac)n.

14



1.3 Strong Markov property

In Section 1.1 we proved the Markov property: for any time m, condi-
tional on Xm = i, the process after time m begins afresh from i. Suppose,
instead of conditioning on Xm = i, we simply waited for the process to hit
state i, at the random time τi. What can one say about the process after
time τi? What if we replaced τi by a more general random time, for example
τi − 1? In this section we shall identify a class of random times at which a
version of the Markov property does hold. This class will include τi but not
τi − 1, after all, the process after time τi − 1 jumps straight to i, so it does
not simply begin afresh.

Definition 1.3. A random variable τ : Ω → N ∪ {∞} is called a stopping
time if the event {τ ⩽ n} ∈ σ(X0, · · · , Xn) for any n ∈ N+.

Obviously, {τ ⩽ n} ∈ σ(X0, · · · , Xn) can be replaced by {τ = n} ∈
σ(X0, · · · , Xn) for any n ∈ N+. Intuitively, τ is a stopping time if by
watching the process, you know at the time when τ occurs. If asked to stop
at τ, you know when to stop.

¶ Example 1.8.

(i) The first hitting time τA is a stopping time because

{τA = n} = {X0 /∈ A, . . . ,Xn−1 /∈ A,Xn ∈ A}

(ii) The first passage time σA is a stopping time because

{σA = n} = {X1 /∈ A, . . . ,Xn−1 /∈ A,Xn = j}

(iii) The last exit time of A ⊂ I

LA = sup {n ≥ 0 : Xn ∈ A}

is not in general a stopping time, because the event
{
LA = n

}
depends

on whether (Xn+m)m≥1 visits A or not.

15



We shall show that the Markov property holds at stopping times τ . That
is, if τ < ∞ and we konw the state of the chain when it stops, i.e., Xτ = i,
then the history (X0, · · · , Xτ ) and the future (Xτ+n)n⩾0 are independent,
and the future (Xτ+n)n⩾0 is Markov chain starting at i with the previous
tansition matrix.

On the event {τ < ∞}, we define (X0, · · · , Xτ ) = (X0, · · · , Xn) when
{τ = n}, for all n ⩾ 0. Since {τ = n} ∈ σ(X0, · · · , Xn), it is well-defined.
We regard (X0, · · · , Xτ ) as an random orbit in ∪n⩾0I

n+1 equipped with a σ-
algebra consisting of all the subset of ∪n⩾0I

n+1. The first problem is, What
are the events determined by (X0, · · · , Xτ ), i.e., what is σ(X0, · · · , Xτ ) ?

For any A ⊂ ∪n⩾0I
n+1, let An = A ∩ In+1, then A = ∪n⩾0An. Then

{(X0, · · · , Xτ ) ∈ A} =
⊎
n⩾0

{(X0, · · · , Xn) ∈ An} ∩ {τ = n} .

Let Fn = σ(X0, · · · , Xn) for all n ⩾ 0. Thus we have

σ(X0, · · · , Xτ ) = {B ∈ F : B ∩ {τ = n} ∈ Fn for all n ⩾ 0} . (1.5)

Theorem 1.10 (Strong Markov property). Let (Xn)n≥0 be Markov(λ, P )

and let τ be a stopping time of (Xn)n≥0 . Then, conditional on τ < ∞ and
Xτ = i, (Xτ+n)n≥0 is Markov(δi, P ) and independent of (X0, X1, . . . , Xτ )

Proof. We only need to prove that for any B ∈ σ (X0, X1, . . . , Xτ ),

P ({Xτ = j0, Xτ+1 = j1, . . . , Xτ+n = jn} ∩B | τ < ∞, Xτ = i)

= Pi (X0 = j0, X1 = j1, . . . , Xn = jn) P (B | τ < ∞, Xτ = i)

Which is equivalent to

P ({Xτ = j0, Xτ+1 = j1, . . . , Xτ+n = jn} ∩B ∩ {τ < ∞} ∩ {Xτ = i})

= Pi (X0 = j0, X1 = j1, . . . , Xn = jn) P (B ∩ {τ < ∞} ∩ {Xτ = i})

It’s sufficient to prove that for any m ⩾ 0,

P ({Xτ = j0, Xτ+1 = j1, . . . , Xτ+n = jn} ∩B ∩ {τ = m} ∩ {Xτ = i})

= Pi (X0 = j0, X1 = j1, . . . , Xn = jn)P (B ∩ {τ = m} ∩ {Xτ = i}) ,
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i.e.,

P ({Xm = j0, Xm+1 = j1, . . . , Xm+n = jn} ∩B ∩ {τ = m} ∩ {Xm = i})

= Pi (X0 = j0, X1 = j1, . . . , Xn = jn)P (B ∩ {τ = m} ∩ {Xm = i}) ,

Note that B ∩ {τ = m} ∈ σ(X0, · · · , Xm) so, by the Markov property at
time m we konw the indentity holds. So we comlpete the proof.

¶ Example 1.9 (去掉时滞). We now consider an application of the strong
Markov property to a Markov chain (Xn)n≥0 observed only at certain times.
In the first instance suppose that we observe the original chain only when it
moves. Let S0 = 0 and for m = 0, 1, 2, · · ·

Sm+1 = inf {n ⩾ Sm + 1 : Xn 6= XSm}

Assume there are no absorbing states. It’s easy to find that the random
times Sm for m ⩾ 0 are stopping times. The resulting process (Zn)n⩾0 is
given by Zn = XSn and, by the strong Markov property

P (Zm+1 = im+1 | Z0 = i1, . . . , Zm = im)

= P
(
XSm+1 = im+1 | XS0 = i1, . . . , XSm = im

)
= Pim (XS1 = im+1) = p̃imim+1

where p̃ii = 0 and, for i 6= j, p̃ij = pij/(1− pii). Thus (Zm)m≥0 is a Markov
chain with transition matrix P̃ .

¶ Example 1.10 (限制观测窗口). A second example of a similar type arises
if J ⊂ I is some subset of the state-space and we observe the chain only
when it takes values in J . The resulting process (Ym)m≥0 may be obtained
formally by setting Ym = XTm , where

T0 = inf {n ≥ 0 : Xn ∈ J}

and, for m = 0, 1, 2, · · ·

Tm+1 = inf {n > Tm : Xn ∈ J}

17



Let us assume that P (Tm < ∞) = 1 for all m. For each m we can check
easily that Tm, the time of the m th visit to J, is a stopping time. So the
strong Markov property applies to show, for i1, . . . , im+1 ∈ J, that

P (Ym+1 = im+1 | Y0 = i1, . . . , Ym = im)

= P
(
XTm+1 = im+1 | XT0 = i1, . . . , XTm = im

)
= Pim (XT1 = im+1) = p̄imim+1

where pij = Pi(σJ = j) for all i, j ∈ J .

¶ Example 1.11. Let (Xn)n⩾0 be gamblers’ ruin We know from Example

20 1. Discrete-time Markov chains

(c) The last exit time

LA = sup{n ≥ 0 : Xn ∈ A}

is not in general a stopping time because the event {LA = n} depends on
whether (Xn+m)m≥1 visits A or not.

We shall show that the Markov property holds at stopping times. The
crucial point is that, if T is a stopping time and B ⊆ Ω is determined by
X0,X1, . . . ,XT , then B ∩ {T = m} is determined by X0,X1, . . . ,Xm, for
all m = 0, 1, 2, . . . .

Theorem 1.4.2 (Strong Markov property). Let (Xn)n≥0 be

Markov(λ,P ) and let T be a stopping time of (Xn)n≥0. Then, conditional

on T < ∞ and XT = i, (XT+n)n≥0 is Markov(δi, P ) and independent of

X0,X1, . . . ,XT .

Proof. If B is an event determined by X0,X1, . . . ,XT , then B ∩ {T = m}
is determined by X0,X1, . . . ,Xm, so, by the Markov property at time m

P({XT = j0,XT+1 = j1, . . . ,XT+n = jn} ∩B ∩ {T = m} ∩ {XT = i})
= Pi(X0 = j0,X1 = j1, . . . ,Xn = jn)P(B ∩ {T = m} ∩ {XT = i})

where we have used the condition T = m to replace m by T . Now sum over
m = 0, 1, 2, . . . and divide by P(T <∞,XT = i) to obtain

P({XT = j0,XT+1 = j1, . . . ,XT+n = jn} ∩B | T <∞,XT = i)

= Pi(X0 = j0,X1 = j1, . . . ,Xn = jn)P(B | T <∞,XT = i).

The following example uses the strong Markov property to get more
information on the hitting times of the chain considered in Example 1.3.3.

Example 1.4.3

Consider the Markov chain (Xn)n≥0 with diagram

0 1 i i+ 1

q q qpp p

Figure 1.3: gamblers’ ruin

1.3 the probability of hitting 0 starting from 1. Here we obtain the complete
distribution of the time to hit 0 starting from 1 in terms of its probability
generating function. Set

τj = inf {n ≥ 0 : Xn = j}

and, for 0 ⩽ s < 1,

ϕ(s) = E1 (s
τ0) =

∞∑
n=1

P1 (τ0 = n) sn .

Using first step analysis,

ϕ(s) = E1 (s
τ0) = pE1 (s

τ0 | X1 = 2) + q E1 (s
τ0 | X1 = 0)

= psE1

(
sτ0−1 | X1 = 2

)
+ q E1 (s | X1 = 0)

= psE2 (s
τ0) + qs
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Now we try to compute E2 (s
τ0). Under P2, we have τ0 < τ1. Apply the

strong Markov property at τ1 to see that conditional on τ1 < ∞ (and of
course Xτ1 = 1), we have τ0 − τ1 is independent of τ1.

E2 (s
τ0) = E2

(
sτ1 sτ0−τ1 | τ1 < ∞

)
P2 (τ1 < ∞)

= E2

(
sτ11{τ1<∞}

)
E2

(
sτ0−τ1 | τ1 < ∞

)
= E2 (s

τ1)E2

(
sτ0−τ1 | τ1 < ∞

)
The space is translation invarint, so the distribution of τ1 under P2 coincides
with the distribution of τ0 under P1, so E2 (s

τ1) = ϕ(s). On the other
hand,by strong Markov property, conditional on τ1 < ∞, τ0 − τ1 has the
same distribution of τ0 under P1, thus E2 (s

τ0−τ1 | τ1 < ∞) = ϕ(s). Then
E2 (s

τ0) = ϕ(s)2.

Thus ϕ = ϕ(s) satisfies

psϕ2 − ϕ+ qs = 0 (1.6)

and this equation has two solutions: (1±
√

1− 4pqs2)/2ps. Since ϕ(0) ⩽ 1,
and ϕ is continuous we are forced to take the negative root at s = 0 and
stick with it for all 0 ≤ s < 1. Thus

ϕ(s) =
1−

√
1− 4pqs2

2ps
. (1.7)

(i) To recover the distribution of τ0 we expand the square-root as a power
series:

ϕ(s) =
1

2ps

{
1−

(
1 +

1

2

(
−4pqs2

)
+

1

2

(
−1

2

)(
−4pqs2

)2
/2! + . . .

)}
= qs+ pq2s3 + . . .

= sP1 (τ0 = 1) + s2P1 (τ0 = 2) + s3P1 (τ0 = 3) + . . .

The first few probabilities P1 (τ0 = 1) ,P1 (τ0 = 2) , · · · are readily checked
from first principles.
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(ii) On letting s ↑ 1, we have ϕ(s) → P1(τ0 < ∞), so

P1 (τ0 < ∞) =
1−

√
1− 4pq

2p
=

{
1 , if p ≤ q .

q/p , if p > q .

(iii) We can also find the mean hitting time using

E1 (τ0) = lim
s↑1

ϕ′(s) .

It is only worth considering the case p ⩽ q, where the mean hitting
time has a chance of being finite. Differentiate (1.6) to obtain

2psϕϕ′ + pϕ2 − ϕ′ + q = 0 ,

so

ϕ′(s) =
(
pϕ(s)2 + q

)
/(1−2psϕ(s)) → 1/(1−2p) = 1/(q−p) as s ↑ 1 .

EXERCISE

¶ Exercise 1.12. τ , σ both are stopping times. Then

(i) τ ∧ σ, τ ∨ σ, τ + σ are stopping times.

(ii) Assume σ ⩾ τ , give an example such that σ − τ is not stopping time.

¶ Exercise 1.13. Let ξ1, ξ2, . . . be independent identically distributed ran-
dom variables with P (ξ1 = 2) = P (ξ1 = −1) = 1/2, and set X0 = 1, Xn =

X0 + ξ1 + · · ·+ ξn for n ≥ 1. Show that the probability generating function
ϕ(s) = E (sτ0) now satisfies

sϕ3 − 2ϕ+ s = 0
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1.4 Recurrence and transience

Let (Xn)n⩾0 be a Markov chain with transition matrix P . We say that
a state i is recurrent if

Pi (Xn = i i.o. ) = 1 ,

is transient if
Pi (Xn = i i.o. ) = 0 .

Thus a recurrent state is one to which you keep coming back and a transient
state is one which you eventually leave for ever. We shall show that every
state is either recurrent or transient.

1.4.1 Decomposing orbit by excursions

Recall that the first passage time to state i is the random variable Ti

defined by
Ti = inf {n ⩾ 1 : Xn = i} , .

where inf∅ = ∞. We now define inductively the r th passage time T
(r)
i to

state i by
T
(0)
i = 0, T

(1)
i = Ti

and, for r = 0, 1, 2, · · ·

T
(r+1)
i = inf

{
n ⩾ T

(r)
i + 1 : Xn = i

}
.

The length of the rth excursion to i is then

σ
(r)
i =

{
T
(r)
i − T

(r−1)
i , if T (r−1)

i < ∞ .

∞ , otherwise .

Our analysis of recurrence and transience will rest on finding the joint dis-
tribution of these excursion lengths.
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Lemma 1.11. For r = 2, 3, · · · , conditional on T
(r−1)
i < ∞, σ

(r)
i is inde-

pendent of
(
X0, · · · , XT

(r−1)
i

)
and

P
(
σ
(r)
i = n | T (r−1)

i < ∞
)
= Pi (Ti = n)

Proof. Apply the strong Markov property at the stopping time T = T
(r−1)
i .

It is automatic that XT = i on T < ∞ . So, conditional on T < ∞ ,
(XT+n)n⩾0 is Markov (δi, P ) and independent of X0, X1, . . . , XT . But

σ
(r)
i = inf {n ⩾ 1 : XT+n = i}

so σ
(r)
i is the first passage time of (XT+n)n⩾0 to state i.

Corollary 1.12. For any positive integer r and n1, · · · , nr ∈ N+,

Pi

(
σ
(1)
i = n1, σ

(2)
i = n2, · · · , σ(r)

i = nr

)
=

r∏
s=1

Pi (σi = ns) .

Moreover, {σ(r)
i }∞r=1 are i.i.d. r.v.’s under Pi if Pi(σi < ∞) = 1.

Also, we can compute the distribution of T
(r)
i in terms of the return

probability
ρij = Pi (σj < ∞) .

Then

Corollary 1.13. For any r ∈ N+, We have

P
(
T
(r)
i < ∞

)
= ρr−1

ii P (σi < ∞) .

Proof. When r = 1 the result is true. Suppose inductively that it is true for
r, then

P
(
T
(r+1)
i < ∞

)
= P

(
T
(r)
i < ∞ and σ

(r+1)
i < ∞

)
= P

(
σ
(r+1)
i < ∞ | T (r)

i < ∞
)
P
(
T
(r)
i < ∞

)
= Pi (σi < ∞)P

(
T
(r)
i < ∞

)
= ρii(ρii)

r−1P (σi < ∞) = (ρii)
rP (σi < ∞) .

So by induction the result is true for all r ∈ N+.

22



1.4.2 Visits number and recurrence

Let us introduce the number of visits Vi to i, which may be written
in terms of indicator functions as

Vi =
∞∑
n=0

1{Xn=i} .

It’s easy to observe that if the Markov chain starts at state i, i.e., X0 = i,
then

{Vi > r} = {T (r)
i < ∞}.

Then Pi(Vi > n) = (ρii)
n for any n. Thus we have shown

Theorem 1.14. Under Pi, the number of visits Vi is geometric(1− ρii).

As a consequence,

Pi(Vi = ∞) =

{
1, ρii = 1.

0, ρii < 1.

In particular, every state is either transient or recurrent. Besides,

Ei(Vi) =

∞∑
r=0

Pi(Vi > r) =

∞∑
r=0

(ρii)
r =

{
∞, ρii = 1.
1

1−ρii
, ρii < 1.

On the other hand, Vi is the sum of indicator functions, so

Ei (Vi) =
∞∑
n=0

Pi (Xn = i) =
∞∑
n=0

p
(n)
ii .

Finally, we have got the necessary and sufficient condition of recurrence.

Theorem 1.15. The following dichotomy holds:

(i) i is recurrent ⇔ ρii = 1 ⇔
∑∞

n=0 p
(n)
ii = ∞.

(ii) i is transient ⇔ ρiii < 1 ⇔
∑∞

n=0 p
(n)
ii < ∞.

Another proof using first passage decomposition is given in Exercise 1.21.
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First we show that recurrence and transience are class properties.

Theorem 1.16. Suppose state i is recurrent, and i → j, then

(i) j → i, and Pj(τi < ∞) = 1.

(ii) j is recurrent.

Proof. First we show that Pj(τi < ∞) = 1. Since Pi(Vi = ∞) = 1, there
must be Pi(Vi = ∞, τj < ∞) = Pi(τj < ∞). On the other hand,

{Vi = ∞, τj < ∞} =
{ ∑

n⩾τj

1{Xn=i} = ∞, τj < ∞
}

Thus, by strong Markov property,

Pi (Vi = ∞ , τj < ∞) = Pi(τj < ∞)Pj(Vi = ∞)

Thus
Pj(Vi = ∞) = 1 .

But Pj(Vi = ∞) ⩽ Pj(τi < ∞) ⩽ 1, so we get Pj(τi < ∞) = 1.

Since j ↔ i, there exists l,m ⩾ 0 with p
(l)
ij > 0 and p

(m)
ji > 0, and, for all

r ⩾ 0

p
(l+r+m)
jj ⩾ p

(l)
ij p

(r)
ii p

(m)
ji

So

∞ =
∞∑
r=0

p
(r)
ii ⩽ 1

p
(n)
ij p

(m)
ji

∞∑
r=0

p
(l+r+m)
kk

Hence j is also recurrent by Theorem 1.15. Another proof of (ii), using the
partition of orbits by excuision , can be found in Exercise 1.22.

Corollary 1.17. Recurrence and transience are class properties, and every
recurrent class is closed.
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1.4.3 Absorption probability test

The following theorem relates the recurrence with absorbtion probability.
Intuitively, a state i is recurrent, then the chain must return to i with
probability 1 from any state i leading to. And the converse is ture.

Theorem 1.18. State i is recurrent if and only if for any state j such that
i leads to j, there must be Pj (τi < ∞) = 1 .

Proof. Sufficiency : If i → j implies Pj (τi < ∞) = 1, since

Pi (σi < ∞) =
∑
j∈I

pijPj (τi < ∞) ,

and for any j such that pij > 0, Pj (τi < ∞) = 1. Thus Pi (σi < ∞) = 1.

Necessity : See Theorem 1.16.

We will need the following corollary in Section 1.8, which asserts that
irreducibile and recurrent chain will visit any state with probability one, no
matter what the initial distribution is.

Corollary 1.19. Suppose P is irreducible and recurrent. Then for all state
j we have P (σj < ∞) = 1,

Proof. By total probability formula we have

P (σj < ∞) =
∑
i∈I

P (X0 = i)Pi (σj < ∞)

Note that i is recurrent, Pi (σi < ∞) = 1. and by Theorem 1.18 we konw
that Pi (σj < ∞) = Pi (τj < ∞) = 1, for all j 6= i. So P (σj < ∞) = 1.

Absorption probability test : If P is irreducible, then P is recurrent if
and only if for any state i, (1.8) has a unique solution: xj = 1,∀ j ∈ I.

xi = 1 .

xj =
∑
k∈I

pikxk, ∀ j 6= i .

xj ⩾ 0, ∀ j ∈ I .

(1.8)
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¶ Example 1.14 (Recurrence of the birth-death chain). Let (Xn)n⩾0 be a
irreducible birth-death chain with birth probability bi and death probability
di. Let Ri = 1 +

∑i
k=1

d1···dk
b1···bk , R = 1 +

∑∞
k=1

d1···dk
b1···bk . By Example 1.2,

(i) if R < ∞, xi := 1 − Ri−1

R is a solution not equals 1, so the Markov
chain is transient ;

(ii) if R = ∞, then xi = 1,∀i ∈ N+, the chain is recurrent.

Therefore, the Markov chain is recurrent if and only if R = ∞.

¶ Example 1.15 (λ-biased random walk on homogeneous tree Td). Let
(Xn)n⩾0 be the λ-biased random walk on homogeneous tree Td. Let

Yn = |Xn| for each n ∈ N ,

then (Yn)n⩾0 is a birth-death chain with birth probability bi =
d

λ+d . (Xn)n⩾0

hits it’s root if and only if (Yn)n⩾0 hits 0, thus the recurrence of {Xn}
coincides with {Yn}. By Example 1.14, R = 1 +

∑∞
k=1(

λ
d )

k, hence {Xn} is
recurrent if and only if λ ⩾ d.

¶ Example 1.16. 我们来考虑 Example 1.4 中马氏链的常返性. 这个马氏链是不
可约的, 其常返性质等价于吸收概率方程组的解是否恒为 1. 由 Example 1.4 中的
讨论, 我们知道该马氏链常返当且仅当 R = ∞, 其中

R = 1 +

∞∑
k=1

exp

−c

k∑
j=1

j−α


(i) 若 c = 0, 则 R = ∞, 马氏链常返, 它就是带反射壁的简单随机游动.

(ii) 若 c > 0. 当 a > 1 时,

k∑
j=1

j−α <

∞∑
j=1

j−α < ∞, exp

−c

k∑
j=1

j−α

 ⩾ ε > 0

于是 R = ∞, 马氏链常返.
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(iii) 若 c > 0. 当 a < 1 时

k∑
j=1

j−α ≈ k1−α

1− α
, exp

−c

k∑
j=1

j−α

 ≈ exp
(
− c

1− α
k1−α

)
.

于是 R < ∞, 马氏链常返.

(iv) 若 c > 0. 当 a = 1 时

k∑
j=1

j−1 ≈ log k, exp

−c

k∑
j=1

j−α

 ≈ k−c

于是当且仅当 c ⩽ 1 时 R = ∞.
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1 0 ã 1.5: ~�: α > 1; α = 1�c ≤ 1; α < 1�c = 0.¥, ¢�L«~�, J�L«�~�. 2öSK
1. y²: é?¿i 6= j, (1) e¡n^�d: ρij > 0, i → j, Gij > 0; (2) Gij ≤ Gjj ; (3)

ρii = 1− 1/Gii.

.

Figure 1.4: 参数取值与常返

于是, 常返性依赖于参数的关系如 Figure 1.4 所示, 其中实线表示常返, 虚线表示非
常返.

¶ Example 1.17 (Simple random walk on Zd). The fact is when d = 1, 2,
the walk is recurrent, but when d ⩾ 3, the walk is transient.

Suppose we start at 0. It is clear that we cannot return to 0 after an odd
number of steps, so p

(2n+1)
00 = 0 for all n. Assume we return to 0 after 2n

steps. Of these 2n steps there must be lr up, lr down in the rth direction,
with l1 + · · ·+ ld = n. By counting the ways in which this can be done, we
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obtain

p
(2n)
00 = P0 (S2n = 0) =

∑
l1+···+ld=n

(2n)!

(l1!)
2 · · · (ld!)2

· 1

(2d)2n
,

where lr take values in N for all r = 1, · · · , d. We will prove

P0 (S2n = 0) ∼ Cn− d
2 .

(i) when d = 1 , using Stirling formular n! ∼ (n/e)n
√
2πn we know

p
(2n)
00 =

(2n)!

(n!)2
· 1

22n
∼ 1√

πn

So E0V0 =
∑∞

n=0 p
(n)
00 = ∞.

(ii) When d = 2,

P0 (S2n = 0) =
∑

l1+l2=n

(2n)!

(l1!)
2 (l2!)

2

1

42n
=

(2n)!

n!n!

1

42n

∑
l1+l2=n

n!

l1!l2!

n!

l2!l1!

=

(
2n

n

)
1

42n

n∑
l=0

(
n

l

)(
n

n− l

)
=

1

42n

(
2n

n

)2

∼ 1

πn

Also, we have E0V0 =
∑∞

n=0 p
(n)
00 = ∞.

(iii) When d = 3,

P0 (S2n = 0) =
∑

l1+l2+l3=n

(2n)!

(l1!)
2 (l2!)

2 (l3!)
2

1

62n

=
1

22n
(2n)!

n!n!

∑
l1+l2+l3=n

(
n!

l1!l2!l3!

1

3n

)2

Note that ∑
l1+l2+l3=n

(
n

l1 l2 l3

)(
1

3

)n

= 1

the left-hand side being the total probability of all the ways of placing
n balls randomly into three boxes. For the case where n = 3m, we
have

n!

l1!l2!l3!
⩽ n!

(m!)3
∼ 3n

3
√
3

2πn
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for all l1, l2, l3. So

p
(2n)
00 ≤

(
2n

n

)(
1

2

)2n( n

mmm

)(
1

3

)n

∼
(

3

πn

)3/2

as n → ∞

by Stirling’s formula. Hence,
∑∞

m=0 p
(6m)
00 < ∞ by comparison with∑∞

n=0 n
−3/2. But p(6m)

00 ≥ (1/6)2p
(6m−2)
00 and p

(6m)
00 ≥ (1/6)4p

(6m−4)
00 for

all m so we must have

E0V0 =
∞∑
n=0

p
(n)
00 < ∞ ,

and the walk is transient.

(iv) In the last, For the case when d ⩾ 4 we can use the same method with
d = 3.

EXERCISE

¶ Exercise 1.18. Prove that every finite closed class is recurrent.

¶ Exercise 1.19. 称 Gij := Ei(Vj) =
∑∞

n=0 p
(n)
ij 为格林函数 (见章复熹老师讲

义). 证明

(i) Pi(T
(r)
j < ∞) = Pi(Vj ⩾ r) = ρij(ρjj)

r−1, 其中 j 6= i 且 r 为正整数.

(ii) 先用 (i) 中的结论, 证明对任何 i, j, Gij = Pi(τj < ∞)Gjj . 再直接证明它, 不
要用 (ii) 中的结论.

(iii) 状态 j 非常返当且仅当 E(Vj) < ∞ 对任何初始分布 λ 成立, 状态 j 常返当

且仅当 E(Vj) < ∞ 对任何初始分布 λ, Pλ(τj < ∞) 成立.

¶ Exercise 1.20. π is an invariant distribution of P . If state j is transient,
then πj = 0.

¶ Exercise 1.21 (First passage decomposition). Denote by σj the first pas-
sage time to state j and set

f
(n)
ij = Pi (σj = n)
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Justify the identity

p
(n)
ij =

n∑
k=1

f
(k)
ij p

(n−k)
jj for n ⩾ 1

and deduce that
Pij(s) = δij + Fij(s)Pjj(s)

where
Pij(s) =

∞∑
n=0

p
(n)
ij sn, Fij(s) =

∞∑
n=0

f
(n)
ij sn

Hence show that Pi (Ti < ∞) = 1 if and only if
∞∑
n=0

p
(n)
ii = ∞ .

¶ Exercise 1.22. We should point that decomposing the orbits into many
excursions is a very useful idea. Assume state i is recurrent and (Xn)n⩾0.
start at i. Thus T

(k)
i < ∞ for any k ∈ N+. Then we can define Zk =

(X
T

(k−1)
i

, · · · , X
T

(k)
i

), is the k-th excursion. Zk take values in {(i0, · · · , in) :
i0 = in = i; ik 6= i, 0 < k < n;n ∈ N+}.

(i) Show that conditional on X0 = i, {Zk} are i.i.d. random vectors taking
values in ∪n⩾0I

n+1.

(ii) Using (i) to show that if i leads to j, then

(a) Pi(σj < σi) > 0.

(b) Pi(Vj = ∞) = 1.

(c) Pj(Vj = ∞) = 1 and Pi(τj < ∞) = 1.

(iii) Read the proof of idea and Example 1.35.
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1.5 Invariant distributions

1.5.1 Definitions and examples

Many of the long-time properties of Markov chains are connected with
the notion of an invariant distribution or measure. Remember that a dis-
tribution λ is any row vector (λi)i∈I with non-negative entries. We say λ is
an invariant distribution for P if

λP = λ . (1.9)

When λ is a measure satisfying (1.9), we call it invariant measure.

Proposition 1.20. Let (Xn)n⩾0 be Markov (π, P ) and suppose that π is
invariant for P. Then (Xm+n)n⩾0 is also Markov (π, P ).

Proof. Clearly, P (Xm = i) = (πPm)i = πi for all i.
On the other hand, conditional on Xm+n = i, Xm+n+1 is independent of

(Xm, Xm+1, · · · , Xm+n) and has distribution (pij)j∈I .

Based on this property, invariant distribution is also called stationary
distribution. Sometimes it also called equilibrium, the reason is given in
Theorem 1.39.

为了从直观上理解不变分布, 我们引入 “概率流” 的观点. 把每个状态理
解为一个位置. 假设我们有大量的粒子, 先将每个粒子独立地按照分布 λ 放

在某个随机位置, 根据强大数定律, 位置 i 上的粒子量 (相对于所有粒子的
比例) 应该为单个粒子位于状态的概率, 即 λi. 现在, 让所有粒子独立地按
照转移矩阵 P 跳跃一步, 那么, 仍然根据强大数定律, 从位置 i 跳跃至位置

j 的粒子量就应该为当个粒子最初位于位置 i 一步以后位于位置 j 的概率,
即 λipij. 因此, 我们观测到的现象是, 在这一步转移中, 从 i 到 j 的粒子流

量为 λipij , 我们也说从 i 到 j 的概率流为 λipij .

若 π 为不变分布, 则它任意位置 i 上的粒子量保持不变, 因此, 在 π 诱

导的概率流中, 对任意位置, 从其他位置流入位置 i 的总流量
∑

j ̸=i πjpji 与
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从 i 位置流出的总流量 πi(1− pii) 是相等的, 即
∑

j πjpji = πi. 进一步, 自
然应该有进出任意子集 A 的概率流相等:

Proposition 1.21. A distribution π is invariant for P iff for any A ⊂ I,∑
i/∈A,j∈A

πipij =
∑

i∈A,j /∈A

πipij . (1.10)

Proof. Sufficiency is obvious. To show necessity, we observe that∑
i/∈A,j∈A

πipij +
∑

i∈A,j∈A
πipij =

∑
j∈A,i∈I

πipij =
∑
j∈A

πj .

∑
i∈A,j /∈A

πjpji +
∑

i∈A,j∈A
πipij =

∑
i∈A,j∈I

πipij =
∑
i∈A

πi .

Since
∑

i∈A,j∈A πipij < ∞, (1.10) holds.

Remark. This proposition may be not ture for measure λ, since
∑

i∈A,j∈A λipij

may be ∞.

¶ Example 1.23 (Birth-death chain). Consider the existence od invariant
distributions for birth-death chain mentioned in Example 1.2. b0 = 1. If π
is an invariant distribution, by Proposition 1.21, π0 = π1d1 and

πidi = πi−1bi−1, ∀ i ⩾ 1 .

Thus
πi =

bi−1

di
πi−1 = · · · = b0b1 · · · bi−1

d1d2 · · · di
π0 = γ̂iπ0, ∀ i ⩾ 1 .

where the final equality defines γ̂i for i ⩾ 1. Let γ̂0 = 1 and R̂ =
∑∞

i=0 γ̂i.
Then we have R̂ π0 = 1.

(i) In the case R̂ = ∞, this controducts that π is a distribution. So the
chian has no invariant distribution.

(ii) But if R̂ < ∞, then let πi =
γ̂i
R̂

for all i ⩾ 0. It’s easy to check that π

is an invariant distribution, and is unique!
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¶ Example 1.24. A transition matrix P is said to be doubly stochastic if
its COLUMNS sum to 1, or in symbols

∑
i∈I pij = 1. The ajective “doubly”

refers to the fact that by its definition a transition probability matrix has
ROWS that sum to 1, i.e.,

∑
j∈I pij = 1.

(i) If P is a doubly stochastic transition probability, then the uniform
measure, πi = 1 for all i, is invariant.

(ii) If P is a doubly stochastic transition probability for a Markov chain
with N states, then the uniform distribution, πi = 1

N for all i, is
invariant.

¶ Example 1.25. 设 I = N+,转移概率为: 对于 i ⩾ 1, pi,i−1 = λ/(λ+1), pi,i+k =

pk/(λ + 1), ∀k ⩾ 1; p01 = 1. 其中 1 =
∑∞

k=1 pk < m :=
∑∞

k=1 kpk < λ. 求该马氏
链的不变分布.

解. 首先, 出入 0 的概率流相等, 即 π0 = π1λ/(λ + 1). 其次, 对任意 i ⩾ 2, 令
A = {n : n ⩾ i}, 进入 A 的概率流为

∑i−1
j=1

∑∞
k=i πjpj,k =

∑i−1
j=1 πjfi−j/(λ+ 1), 其

中 fr :=
∑∞

k=r pk; 出 A 的概率流为 πiλ/(λ+ 1), 于是

πi =
1

λ

i−1∑
j=1

πjfi−j , ∀i ⩾ 2

对 i 求和

1−π0−π1 =
1

λ

∞∑
i=2

i−1∑
j=1

πjfi−j =
1

λ

∞∑
j=1

∞∑
i=j+1

πjfi−j =
1

λ

∞∑
j=1

πj

∞∑
r=1

fr =
m

λ
(1− π0)

其中
∞∑
r=1

fr =

∞∑
r=1

∞∑
k=r

pk =

∞∑
k=1

k∑
r=1

pk =

∞∑
k=1

kpk = m

因此解出

π0 =
λ−m

λ−m+ λ+ 1
, π1 =

λ−m

λ−m+ λ+ 1

λ

λ+ 1

根据上面的递推式得到 πi, i ⩾ 2.
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1.5.2 Existence and uniqueness of invariant measures

In this subsection, we will discuss the existence and uniqueness of in-
variant measures and distributions for general Markov chains. Recall that
a measure λ is invariant iff for any i, j in I,

λi =
∑
j∈I

λjpji

It’s obvious that if the cλ is invariant for any constant c. Hence, without
loss of generality we choose some k ∈ I and set λk = 1.

A sufficient condition for existence of invariant measures

In Theorem 1.8, we proved that the absorption probabilities is the mini-
mal non-negative solutions for (1.2), by iterating over the equations system.
Now, we can guess, is the invarint measure the minimal non-negative solu-
tion of the equations system above ?

For each i 6= k, we have

λi =
∑
i1∈I

λi1pi1i =
∑
i1 ̸=k

λi1pi1i + pki

=
∑

i1,i2 ̸=k

λi2pi2i1pi1i +

pki +
∑
i1 ̸=k

pki1pi1i


=

∑
i1,··· ,in ̸=k

λinpinin−1 · · · pi1i

+

pki +
∑
i1 ̸=k

pki1pi1i + · · ·+
∑

i1,··· ,in−1 ̸=k

pkin−1 · · · pi2i1pi1i

 .

Hence we obtain
λi ⩾ Pk (X1 = i and σk > 1) + Pk (X2 = i and σk > 2)

+ · · ·+ Pk (Xn = i and σk > n) .

Letting n → ∞,

λi ⩾ Ek

∞∑
n=1

1{Xn=i,n<σk} = Ek

∑
1⩽n<σk

1{Xn=i} .
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On the other hand, we have λk = 1. So we rewrite the right-hand-side as
following

λi ⩾ Ek

∑
0⩽n<σk

1{Xn=i} , for all i ∈ I .

In right-hand-side, the sum of indicator functions serves to count the number
of times n at which Xn = i before the first passage time σk, it is exactly the
expected time spent in i between visits to k. We give it a notation:

γki := Ek

∑
0⩽n<σk

1{Xn=i} .

Obviously, γkk = 1. Next, we will check if γk =
(
γki
)
i∈I is a invariant measure

for P .

Theorem 1.22. Suppose k is recurrent. Then γk =
(
γki
)
i∈I is an invariant

measure for P .

Remark. Why is this true? This is called the “cycle trick”. γki is the
expected number of visits to i in {0, · · · , σk − 1}. Multiplying by P moves
us forward one unit in time so (γkP )i is the expected number of visits to i

in {1, · · · , σk}. We need the condition k is recurrent, then Xσk
= X0 = k,

it follows that γkP = γk.48 1 Markov Chains
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Fig. 1.2 Picture of the cycle trick

A corollary of this result is that for an irreducible chain if there is a stationary
distribution it is unique. Our next topic is the existence of stationary measures

Theorem 1.24. Suppose p is irreducible and recurrent. Let x 2 S and let Tx D
inffn � 1 W Xn D xg.

	x.y/ D
1X

nD0
Px.Xn D y;Tx > n/

defines a stationary measure with 0 < 	x.y/ < 1 for all y.

Why is this true? This is called the “cycle trick.” 	x.y/ is the expected number of
visits to y in f0; : : : ;Tx � 1g. Multiplying by p moves us forward one unit in time so
	xp.y/ is the expected number of visits to y in f1; : : : ;Txg. Since X.Tx/ D X0 D x it
follows that 	x D 	xp (Fig. 1.2).

Proof. To formalize this intuition, let Npn.x; y/ D Px.Xn D y;Tx > n/ and
interchange sums to get

X

y

	x.y/p.y; z/ D
1X

nD0

X

y

Npn.x; y/p.y; z/

Case 1. Consider the generic case first: z ¤ x:
X

y

Npn.x; y/p.y; z/ D
X

y

Px.Xn D y;Tx > n;XnC1 D z/

D Px.Tx > n C 1;XnC1 D z/ D NpnC1.x; z/

Here the second equality holds since the chain must be somewhere at time n, and
the third is just the definition of NpnC1. Summing from n D 0 to 1, we have

1X

nD0

X

y

Npn.x; y/p.y; z/ D
1X

nD0
NpnC1.x; z/ D 	x.z/

since Np0.x; z/ D 0:

Figure 1.5: cycle trick
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Proof. For any j ∈ I,

∑
i∈I

γki pij =
∑
i∈I

pijEk

σk−1∑
n=0

1{Xn=i} =
∑
i∈I

∞∑
n=0

pijPk(Xn = i, n < σk)

=
∑
i∈I

∞∑
n=0

Pk(Xn = i,Xn+1 = j, n < σk)

=
∞∑
n=0

Pk(Xn+1 = j, n < σk) =
∞∑
n=1

Pk(Xn = j, n ⩽ σk)

= Ek

σk∑
n=1

1{Xn=j}

Since k is recurrent, under Pk we have σk < ∞, then X0 = Xσk
= k. So we

have
σk−1∑
n=0

1{Xn=j} =

σk∑
n=1

1{Xn=j}, Pk-a.s.

So we get
∑

i∈I γ
k
i pij = γkj , in other words, γkP = γk.

Remark. Without the condition that k is recurrent, we only have

σk−1∑
n=0

1{Xn=j} =

σk∑
n=1

1{Xn=j} + 1{X0=j, σk=∞}.

So in this case, γk is not always invariant .

Now we have a sufficient condition for the existence of invariant measure.

Corollary 1.23. If Markov chain has a recurrent state, then invaiant mea-
sures exist.

Remark. The existence of an invariant measure does not guarantee recur-
rence, even if the chain is irreducible. For a counterexample,

¶ Example 1.26. Consider the simple symmetric random walk on Z3, which
is transient by Example 1.17, but has an invariant measure π given by πi = 1

for all i.
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A sufficient condition for uniqueness of invariant measures

Let k ∈ I be recurrent and C is the communicating class containing k.
Then C is closed, so there must be γki = 0 for all i /∈ C. Hence (γki )i∈C is
invariant for P |C , and P |C is irreducible. So if I has two distinct recurrent
class, the invariant measures for P is not unique. Therefore, now we only
need to discuss the case that P is irreducible and recurrent.

First, we point that the invariant measures for an irreducible Markov
chain has an important property:

Lemma 1.24. Let P be irreducible. If λ is an invariant measure for P ,
then λ = 0, or 0 < λ < ∞. Paricularly, if π is an invariant distribution for
P , then πi > 0 for all i.

Proof. Let λ is a invariant measure for P . If there exists some i ∈ I such that
λi > 0, for any j ∈ I, pick n satisfying p

(n)
ij > 0,then λj ⩾ λip

(n)
ij > 0.

Now, we give a sufficient condition for the uniqueness of invariant mea-
sures:

Theorem 1.25. Let P be irreducible and recurrent. Let λ be an invariant
measure for P with λk = 1 for some k ∈ I, then λ = γk. In other words, P
has an unique invariant measures up to scalar multiples.

Proof. We have proved λ ⩾ γk. Since P is recurrent, γk is invariant by
Theorem 1.22. So µ = λ− γk is also an invariant measure for P . Since P is
irreducible, by Lemma 1.24, since µk = 0 we konw µ ≡ 0, so λ = γk.

Remark. When I has only one recurrent class, but is not irreducible, the
invariant measure may be not unique up to scalar mutiples. For an example,

¶ Example 1.27. Consider the chain on Z∪ {∞}. Let pi,i+1 = 1 for i ∈ Z,
and , and p∞∞ = 1. Then P is transient, and 1∞, 1Z both are invariant.
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Corollary 1.26. Let P be irreducible and recurrent. Then if P has an
invariant distribution, it must be unique.

¶ Example 1.28. Consider the asymmetric random walk on Z with tran-
sition probabilities pi,i−1 = q < p = pi,i+1 In components the invariant
measure equation λP = λ reads

λi = λi−1p+ λi+1q

This is a recurrence relation for λ with general solution

λi = A+B(
p

q
)i

So, in this case, there is a two-parameter family of invariant measures
uniqueness up to scalar multiples does not hold.

1.5.3 Existence and uniqueness of invariant distributions

Obviously, if P has a invariant measures λ and Λ :=
∑

i∈I λi < ∞. Then
let

πi =
λi

Λ
for all i ∈ I .

Then π is an invariant distribution for P . Note that∑
j∈I

γij =
∑
j∈I

Ei

∑
0⩽n<σi

1{Xn=j} = Ei

∑
0⩽n<σi

∑
j∈I

1{Xn=j} = Ei (σi)

is exactly the expected return time to i when startingfrom i, and we
give it a notation

mi := Ei (σi) =
∑
j∈I

γij .

Now, it’s natural to introduce the following definition :

Definition 1.4. We say a state i is positive recurrent if mi < ∞, and
a recurrent state which fails to have this stronger property is called null
recurrent.
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Thus, if I has a positive recurrent i, by normalizing γi, we get an invari-
ant distribution π = γi

mi
. Let C be the communicating class containing i,

which is closed, then
∑

i∈C πi = 1, and (πi)i∈C is invariant for irreducible
transition matrix P |C . Thus we focus on the case that P is irreducible first.

The next theorem says that positive recurrence is a class property. And
an irreducible chain has invariant distribution ⇔ it has unique invariant
distribution ⇔ it is positive recurrent.

Theorem 1.27. Let P be irreducible. Then the following are equivalent:

(i) every state is positive recurrent.

(ii) some state i is positive recurrent.

(iii) P has an invariant distribution.

(iv) P has an unique invariant distribution π and πi =
1
mi

for all i ∈ I.

Proof. 1 ⇒ 2 is obvious.
2 ⇒ 3. If i is positive recurrent, so P is recurrent. By Thoerem 1.22, γi

is then invariant. But ∑
j∈I

γij = mi < ∞ .

So π = 1
mi

γi defines an invariant distribution for P .
3 ⇒ 1. Take any state k, Since P is irreducible and

∑
i∈I πi = 1 we have

π > 0 by Lemma 1.24. Hence πk > 0. Set λ = 1
πk
π, then λ is invariant with

λk = 1. By Theorem 1.25, γk ⩽ λ, so

mk =
∑
i∈I

γki ⩽
∑
i∈I

πi
πk

=
1

πk
< ∞

and k is positive recurrent.
3 ⇔ 4. First, 4 ⇒ 3 is obvious. Second, we prove 3 ⇒ 4. Since 3 implies

1, we konw P is recurrent, so the invariant distribution must be unique.

39



At the same time, assume π is a invariant distribution, from Theorem 1.25,
1
πk
π = γk for all k ∈ I. Therefore mk =

∑
i∈I γ

k
i =

∑
i∈I

πi
πk

= 1
πk

. we have
πk = 1

mk
for all k ∈ I.

Now we can give a necessary and sufficient condition for the existence
and uniqueness of invariant distributions.

Theorem 1.28. (Xn)n⩾0 be Markov chian on I with transition matrix P .

(i) P has invariant distributions if and only if I has a positive recurrent
class. In this case, let π one invariant distributions, then πi =

π([i])
mi

for all i ∈ I, where [i] is the communicating class containg i.

(ii) P has unique invariant distribution, if and only if I has unique positive
recurrent class. In this case, let π the invariant distributions, and C is
the unique positive recurrrent class. Then πi =

1
mi

for all i ∈ C, and
πi = 0 for all i ∈ I\C.

¶ Example 1.29 (Simple symmetric random walk on Z). The simple sym-
metric random walk on Z is clearly irreducible and, by Example 1.17 it is
also recurrent. Consider the measure λi = 1 for all i ∈ Z. Then

λi =
1

2
λi−1 +

1

2
λi+1

so λ is invariant. Now Theorem 1.25 forces any invariant measure to be a
scalar multiple of λ. Since

∑
i∈Z λi = ∞, there can be no invariant distri-

bution and the walk is therefore null recurrent, by Theorem 1.27.

¶ Example 1.30 (Success-run chain). Consider a success-run chain on N,
whose transition probabilities are given by

pi,i+1 = pi > 0, pi0 = qi = 1− pi > 0 ∀ i ⩾ 0 .

Note that For any n ⩾ 1,

P0(σ0 > n) = p0 · · · pn−1 .
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Thus, the chian is recurrent if and only if p =
∏∞

i=0 pi = 0. On the other
hand, we compute that

E0(σ0) = 1 +

∞∑
n=1

p0 · · · pn−1 .

• If E0(σ0) = ∞, the chain is mull recurrent.

• If E0(σ0) < ∞, the chain is positive recurrent.

EXERCISE

¶ Exercise 1.31. Show that Any Markov chian on finite space I has a
invariant distribution.

¶ Exercise 1.32. Let P be a stochastic matrix on a finite set I. Show that a
distribution π is invariant for P if and only if π(I−P +A) = a, where A =

(aij : i, j ∈ I) with aij = 1 for all i and j, and a = (ai : i ∈ I) with ai =

1 for all i. Deduce that if P is irreducible then I−P +A is invertible. Note
that this enables one to compute the invariant distribution by any standard
method of inverting a matrix.

¶ Exercise 1.33. Prove that for any i, j ∈ I,

γij =
Pi(σj < σi)

Pj(σi < σj)
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1.6 Time reversal and detailed balance condition

For Markov chains, the past and future are independent given the present.
This property is symmetrical in time and suggests looking at Markov chains
with time running backwards. On the other hand, convergence to equilib-
rium (see Theorem 1.39 ) shows behaviour which is asymmetrical in time: a
highly organised state such as a point mass decays to a disorganised one, the
invariant distribution. This is an example of entropy increasing. It suggests
that if we want complete time-symmetry we must begin in equilibrium.

We want to show that a Markov chain in equilibrium, run backwards,
is again a Markov chain (the transition matrix may however be different).
When discussing the time revarsal, without loss of genereality, we assume
P is irreducible, since all the mass is concentrated at the closed positive
recurrent classes when the chain in equilibrium.

Theorem 1.29. Let P be irreducible and have an invariant distribution
π. Suppose that (Xn)0⩽n⩽N is Markov(π, P ) and set Yn = XN−n. Then
(Yn)0⩽n⩽N is Markov(π, P̂ ), where P̂ = (p̂ij)i,j∈I is given by

p̂ji =
πipij
πj

for all i, j ∈ I .

and P̂ is also irreducible with invariant distribution π.

Proof. We need to calculate the conditional probability. For any 0 < n < N ,

P (Yn+1 = j | Yn = i, Yn−1 = in−1, · · · , Y0 = i0)

= P
(
XN−(n+1) = j | XN−n = i,XN−n+1 = in−1, · · · , XN = i0

)
= P

(
XN−(n+1) = j | XN−n = i

)
=

πipij
πj

.

This shows (Yn)0⩽n⩽N is a Markov chain with the indicated transition prob-
ability. It’s easy to check π is invariant for P̂ .

The chain (Yn)0⩽n⩽N is called the time-reversal of (Xn)0⩽n⩽N . We
say that (Xn)n⩾0 is reversible if, for all N ⩾ 1, (XN−n)0⩽n⩽N is also Markov
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(λ, P ), which is equilivant to

πipij = πjpji, , for all i, j .

Definition 1.5. A stochastic matrix P and a measure λ are said to be in
detailed balance if

λipij = λjpji , for all i, j .

λ is called symmetric measure (配称测度) and P is symmetrizable (可
配称). In addition, if π is distribution, P and π in detailed balance, we say
π is an reverable distribution for P .

Remark.

(i) Obviously, if P and λ are in detailed balance,then λ is invariant for
P . So when a solution λ to the detailed balance equations exists, it
is often easier to find by the detailed balance equations than by the
equation λ = λP .

(ii) Let P be an irreducible stochastic matrix and π is the invariant dis-
tribution. Let (Xn)n⩾0 be Markov(π, P ). (Xn)n⩾0 is reversible if and
only if P and π are in detailed balance.

Theorem 1.30 (Kolmogorov cycle condition). P is irreducible and has
stationary distribution π. Then π is reverable if and only if the cycle condi-
tion is satisfied: given any cycle of states i0, i1, · · · , in = i0, we have

pi0i1 · · · pin−1in = pinin−1 · · · pi1i0 .

Proof. Necessity : Detailed balance implies

πi0pi0i1 · · · pin−1in = πinpinin−1 · · · pi1i0 .

Since in = i0, and πi0 > 0, the cycle condition holds.
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Sufficiency : Suppose that the cycle condition holds. Let i ∈ I and set
λi = 1. For j 6= i in I let i = i0, · · · , ik = j be a path from i to j with
pin−1,in > 0 for 1 ⩽ n ⩽ k (and hence pin,in−1 > 0 for 1 ⩽ n ⩽ k ). Let

λj =
pi0,i1 · · · pik−1,ik

pik,ik−1
· · · pi1,i0

.

The first step is to show that λj is well defined, i.e., is independent of
the path chosen. Let l0 = i, · · · , lm = j be another path from i to j with
pln−1,ln > 0 for 1 ⩽ n ⩽ m (and hence pln,ln−1 > 0 for 1 ⩽ n ⩽ m ). Combine
these to get a loop that begins and ends at i. Thus, by cycle condition

pi0,i1 · · · pik−1,ikplmlm−1 · · · pl1,l0 = pl0,l1 · · · plm−1lmpik,ik−1
· · · pi1,i0

Which means that

pi0,i1 · · · pik−1,ik

pik,ik−1
· · · pi1,i0

=
pl0,l1 · · · plm−1lm

plmlm−1 · · · pl1,l0
.

This shows that the definition is independent of the path chosen. Obciously,
λ and P are in detailed balance. Since P is irreducible, has a invariant
distribution π, λ is a scalar mutipile of π. Then π and P are in detailed
balance, so π is reverable.
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1.7 Long-run behavior of irreducible chains (I):
Ergodic theorems

Ergodic theorems concern the limiting behaviour of averages over time.
We shall prove a theorem which identifies for Markov chains the long-run
proportion of time spent in each state. An essential tool is the following
ergodic theorem for independent random variables which is a version of the
strong law of large numbers.

Theorem (Strong law of large numbers). Let {ξn} be a sequence of
independent, identically distributed, random variables with Eξ1 exists. Then
as n → ∞,

ξ1 + · · ·+ ξn
n

→ Eξ1 a.s.

We denote by Vi(n) the number of visits to i before n,

Vi(n) :=
n−1∑
k=0

1{Xk=i}

Then Vi(n)
n can be interpreted as the proportion of time before n spent in

state i., or the average number of times the chian appears at state i . The
following result gives the long-run proportion of time spent by a Markov
chain in each state.

Theorem 1.31 (Ergodic theorem I). (Xn)n⩾0 is Markov(λ, P ) and P is
irreducible. Then as n → ∞,

Vi(n)

n
→ 1

mi
, P-a.s. (1.11)

where mi = Ei (σi) is the expected return time to state i.

Proof. If P is transient, then, with probability 1, the total number Vi of
visits to i is finite, so

Vi(n)

n
⩽ Vi

n
→ 0 =

1

mi
.
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Suppose then that P is recurrent. Fix a state i, we have P(σi < ∞) = 1.
So (Xσi+n)n⩾0 is Markov (δi, P ) and independent of (X0, · · · , Xσi) by the
strong Markov property. The long-run proportion of time spent in i is the
same for (Xσi+n)n⩾0 and (Xn)n⩾0, so it suffices to consider the case λ = δi.

Write σ
(r)
i for the length of the r th excursion to i, as in Section 1.4. By

Corollary 1.12 , the non-negative random variables σ
(1)
i , σ

(2)
i , · · · are inde-

pendent and identically distributed with Ei (σi) = mi. Notw that

σ
(1)
i + · · ·+ σ

(Vi(n)−1)
i ⩽ n− 1

the left-hand side being the time of the last visit to i before n. Also

σ
(1)
i + · · ·+ σ

(Vi(n))
i ⩾ n

the left-hand side being the time of the first visit to i after n− 1. Hence

σ
(1)
i + · · ·+ σ

(Vi(n)−1)
i

Vi(n)
⩽ n

Vi(n)
⩽ σ

(1)
i + · · ·+ σ

(Vi(n))
i

Vi(n)
(1.12)

By the strong law of large numbers

Pi

(
σ
(1)
i + · · ·+ σ

(n)
i

n
→ mi as n → ∞

)
= 1

and, since P is recurrent Pi (Vi(n) → ∞ as n → ∞) = 1. So, letting n → ∞
in (1.12), we get Pi

(
n

Vi(n)
→ mi as n → ∞

)
= 1, which implies

Pi

(
Vi(n)

n
→ 1

mi
as n → ∞

)
= 1.

Ergodic theorem implies the uniqueness of invariant distribution for ir-
reducible Markov chain.

Corollary 1.32. P is irreducible, π is an invariant distribution for P . Then
πi =

1
mi

for all state i.
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Proof. Note that for any state i,

Eπ
Vi(n)

n
= Eπ

1

n

n−1∑
k=0

1{Xk=i} =
1

n

n−1∑
k=0

Pπ (Xk = i) = πi

From ergodic theorem we konw Vi(n)/n → πi Pπ-a.s., by domainted limits
theorem we konw

lim
n→∞

Eπ
Vi(n)

n
= Eπ

(
lim
n→∞

Vi(n)

n

)
=

1

mi

Thus πi =
1
mi

.

Corollary 1.33. (Xn)n⩾0 is Markov (λ, P ), and P is irreducible, π is the
(unique) stationary distribution for P . Then we have∑

i∈I

∣∣∣∣Vi(n)

n
− πi

∣∣∣∣→ 0 , P-a.s.

Proof. Given ε > 0, choose J ⊂ I finite so that
∑

i/∈J πi < ϵ. By Theorem
1.31 and Corollary 1.32, we have

∑
i∈J

∣∣∣Vi(n)
n − πi

∣∣∣→ 0, P-a.s. And

∑
i∈I

∣∣∣∣Vi(n)

n
− πi

∣∣∣∣ =∑
i∈J

∣∣∣∣Vi(n)

n
− πi

∣∣∣∣+∑
i/∈J

∣∣∣∣Vi(n)

n
− πi

∣∣∣∣
Note that ∑

i/∈J

∣∣∣∣Vi(n)

n
− πi

∣∣∣∣ ⩽∑
i/∈J

Vi(n)

n
+
∑
i/∈J

πi

⩽
∑
i/∈J

Vi(n)

n
−
∑
i/∈J

πi + 2ϵ

⩽
∑
i∈J

∣∣∣∣Vi(n)

n
− πi

∣∣∣∣+ 2ϵ

Let n → ∞, since ϵ is arbitrary we have
∑

i∈I

∣∣∣Vi(n)
n − πi

∣∣∣→ 0 , P-a.s.
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Remark. Denote M as all the distribution on I. For any µ, ν ∈ M, define

dTV (µ, ν) :=
1

2

∑
i∈I

|µi − νi| (1.13)

and call it the total variation distance between µ and ν. It’s easy to
compute that

dTV (µ, ν) = sup
A⊂I

|µ(A)− ν(A)| = sup
0⩽fi⩽1,∀i

∣∣∣∣∣∑
i

(µi − νj)fi

∣∣∣∣∣ (1.14)

So Corollary 1.33 means that the “statistics” distribution is convergent to
the stationary distribution in dTV , with probability one.

Back to the proof of Corollary 1.33, in fact we had got the following
conclusion:

Proposition 1.34. M as all the distribution on I. For any νn, µ ∈ M,
νn → µ in dTV if and only if νn{i} → µ{i} for all i ∈ I.

Now using Corollary 1.33, we have the following

Theorem 1.35 (Ergodic theorem II). (Xn)n⩾0 is Markov (λ, P ) is irre-
ducible and positive recurrent. π is the (unique) invariant distribution for
P . For any bounded function f : I → R we have

1

n

n−1∑
k=0

f(Xk) →
∫
I
f dπ , P-a.s. (1.15)

Remark. 将 f 看做对每个状态的观测, 那么遍历定理是在说, 观测的时间
平均 (的极限) 等于空间平均.

Proof. Note that

1

n

n−1∑
k=0

f(Xk) =
1

n

n−1∑
k=0

∑
i∈I

1{Xk=i}f(i) =
∑
i∈I

Vi(n)

n
f(i)
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and
∫
I f dπ =

∑
i∈I πif(i). Then we have∣∣∣∣∣ 1n
n−1∑
k=0

f (Xk)−
∫
I
f dπ

∣∣∣∣∣ ⩽∑
i∈I

∣∣∣∣Vi(n)

n
− πi

∣∣∣∣ |f(i)| .
Therefore, as n → ∞,∣∣∣∣∣ 1n

n−1∑
k=0

f (Xk)−
∫
I
f dπ

∣∣∣∣∣→ 0 , P-a.s.

Remark.

(i) In fact, for any f ∈ L1(π), this ergodic theorem holds.

The key idea here is that by breaking the path at the return times to
some state i, we get a sequence of i.i.d. random variables to which we
can apply the law of large numbers.

Proof. With out loss of generality, we assume f is nonnegative. Take
any state i , let T

(0)
i = 0 and T

(k)
i = inf{n ⩾ T

(k−1)
i + 1 : Xn = i} be

the k-th passage time.

Wk =

T
(k+1)
i −1∑
m=T

(k)
i

f (Xm) , k ⩾ 0

By the strong Markov property, the random variables W1,W2, · · · are
i.i.d.. When computing EW1, we want to change the order of summa-
tion and integration, so we use Fubini theorem :

EW1 = E
T

(2)
i −1∑

m=T
(1)
i

f (Xm) = Ei

σi−1∑
m=0

f (Xm)

= Ei

∑
j∈I

Vj(σi)f(j) =
∑
j∈I

EiVj(σi) f(j)

=
∑
j∈I

γijf(j) =
∑
j∈I

πj
πi

f(j) =
1

πi
Eπf < ∞ .
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Using the law of large numbers for W1,W2, · · · , since W0 is finete a.s.,
then as r → ∞

1

r

r∑
k=0

Wk =
1

r

T
(r)
i −1∑
m=0

f (Xm) → 1

πi

∫
I
f dπ , P-a.s.

For any n ∈ N+, let Vi(n) = r, then we have T
(r−1)
i ⩽ n− 1 < T

(r)
i , so

1

n

n−1∑
m=0

f(Xm) =
r − 1

n
· 1

r − 1

T
(r−1)
i −1∑
m=0

f(Xm) +
1

n

n−1∑
m=T

(r−1)
i

f(Xm)

(1.16)
Using Theorem 1.31, as n → ∞, we have

r − 1

n
=

Vi(n)− 1

n
→ πi , P-a.s.

So as n → ∞, r → ∞ , hence as n → ∞

1

r − 1

T
(r−1)
i −1∑
m=0

f(Xm) → 1

πi

∫
I
f dπ , P-a.s.

Thus the first term on RHS in (1.16) converges to Eπf a.s.. We only
need to show that the second term converges to zero. Note that

1

n

n−1∑
m=T

(r−1)
i

f(Xm) ⩽ 1

n

T
(r)
i −1∑

m=T
(r−1)
i

f(Xm) =
Wr−1

n
,

and using strong law of large number, as r → ∞ we have
Wr−1

n
=

r − 1

n

Yr−1

r − 1
− r − 2

n

Yr−2

r − 2
→
∫
I
f dπ −

∫
I
f dπ = 0 , P-a.s.

where Yr :=
∑r

k=1Wk. Now we get the desired result.

(ii) For what reason this theorem is called “ergodic”? In fact , this theorem
has a close links with the following assertion: A ⊂ I∞ and Pπ(X ∈
A) > 0, where X = (Xn)n⩾0. Let Yk := (Xn+k)n⩾0, then

Pπ(∃ k s.t. Yk ∈ A) = 1 .
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This is “ergodic”. In fact, for any integrable f : I∞ → R, we have

1

n

n−1∑
k=0

f(Yk) → EPπf(Y0) .

¶ Example 1.34. Assume (Xn) is irreducible with stationary distribution
π. We give a “genelization” of Theorem 1.31, denote

Vij(n) =
n−1∑
m=0

1{Xm=i,Xm+1=j} .

Then with probability one

Vij(n)

n
→ πipij , as n → ∞

To see this, let Yn = (Xn, Xn+1), then Yn is a Markov chain on Ĩ := {(i, j) :
pij > 0}, and {π̃(i,j) = πipij : (i, j) ∈ Ĩ } is a stationary distribution. Then
Vij(n) =

∑n−1
m=0 1{Ym=(i,j)}. Using Theorem 1.31 we get the required result.

¶ Example 1.35 (Eestimating the transition probability). We consider now
the statistical problem of estimating an unknown recurrent transition matrix
P on the basis of observations of the corresponding Markov chain. Consider,
to begin, the case where we have n observations (X0, · · · , Xn−1). The log-
likelihood function is given by

l(P ) = log
(
λX0pX0X1 · · · pXn−1Xn

)
=
∑
i,j∈I

Vij(n) log pij

up to a constant independent of P, where Vij(n) is the number of transitions
from i to j. before time n, i.e.,

Vij(n) =

n−1∑
m=0

1{Xm=i,Xm+1=j} .

A standard statistical procedure is to find the maximum likelihood es-
timate P̂ , which is the choice of P maximizing l(P ). Since P must satisfy
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the linear constraint
∑

j pij = 1 for each i, and pij ⩾ 0. Using Lagrange
multipliers, we first try to maximize

l(P ) +
∑
i,j∈I

λipij

and then choose (λi : i ∈ I) to fit the constraints. Thus we find

p̂ij =
Vij(n)

Vi(n)
,

which is the proportion of jumps from i which go to j.
We now turn to consider the consistency of this sort of estimate, that is

to say whether p̂ij → pij with probability one as n → ∞. To see this, we
only need to combine Theorem 1.31 and Example 1.34.

Another way is using the idea in remark of ergodic theorem. For any
k = 1, 2, · · · , let

ξk := 1{X
T
(k)
i

+1
=j} .

Then Vij(n) =
∑r

k=1 ξk, where r =
∑n−1

m=1 1{Xm=i} = Vi(n)− 1{x0=i}. Using
strong Markov property we konw {ξk} are i.i.d. r.v.’s with mean pij . So, by
the strong law of large numbers, with probability one∑r

k=1 ξk
r

→ pij , as r → ∞

Note that when n → ∞, Vi(n) → ∞. Thus

Vij(n)

Vi(n)
=

∑r
k=1 ξk
r + 1

→ pij , as n → ∞

EXERCISE

¶ Exercise 1.36. (Xn)n⩾0 is Markov(λ, P ). Show that as n → ∞,

Vi(n)

n
→ P(τi < ∞)

mi
, P-a.s.

where mi = Ei (σi) is the expected return time to state i.
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1.8 Long-run behavior of irreducible chains (II):
Convergence to equlibrium

In this section, we shall investigate the limiting behaviour of the n-step
transition probabilities p

(n)
ij as n → ∞ for an Markov chain.

(i) If i doesn’t lead to j, p(n)ij = 0 for all n.

(ii) If j is transient, by
∑

n p
(n)
ij ⩽

∑
n p

(n)
jj < ∞ we have p

(n)
ij → 0 as

n → ∞.

(iii) If i → j and i, j is recurrent, then i, j are communicating. In this case,
we can assume P is irreducible.

(iv) If i → j, i is transient, j is recurrent. By first decomposition (see
Exercise 1.21) we have

p
(n)
ij =

n∑
k=1

f
(k)
ij p

(n−k)
jj for n ⩾ 1.

Then the limitting behaviour of p(n)ij can be determined by the limitting
behaviour of p

(n)
jj . (See Exercise 1.40) When discussing p

(n)
jj we can

assume P is irreducible.

Therefore, in this section we always assume P is irreducible.

1.8.1 Periodicity

From ergodic theorem we konw that, if P is irreducible, then for any
state i, we have

Vj(n)

n
→ 1

mj
, Pi-a.s.

By Lebesgue domainted convergence theorem,

1

n

n−1∑
k=0

p
(k)
ij → 1

mj
.
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It’s natual to guess that if p(n)ij → 1
mj

as n → ∞. If P is positive recurrent,
that is p

(n)
ij → πj , where π is the unique invariant distribution for P . If P is

null recurrent or transient, that is p
(n)
ij → 0. Let’s see some examples first.

¶ Example 1.37. Let I be finite. Suppose for some i ∈ I that

p
(n)
ij → πj as n → ∞ for all j ∈ I.

Then π = (πj : j ∈ I) is an invariant distribution.

As we saw in Example 1.37, if the state-space is finite and if for some i
the limit exists for all j, then it must be an invariant distribution. But, as
the following example shows, the limit does not always exist.

¶ Example 1.38. Consider the two-state chain with transition matrix

P =

(
0 1

1 0

)

Then P 2 = I, so P 2n = I and P 2n+1 = P for all n. Thus p
(n)
ij fails to

converge for all i, j.

The behaviour of the chain in Example 1.38 is connected with its peri-
odicity.

Definition 1.6. An integer d is called the period of state i if d is the largest
common divisor of

{
n ⩾ 0 : p

(n)
ii > 0

}
. A state i is called aperiodic if i has

period one.

Lemma 1.36. If state i has period d, then p
(nd)
ii > 0 for sufficiently large

n,i.e., there is Ni ∈ N+, for any n ⩾ Ni, p(nd)ii > 0.

Proof. Note that d is the largest common divisor of
{
n ⩾ 0 : p

(n)
ii > 0

}
, so

there exists some n1, · · · , nk such that p
(nk)
ii > 0, and d = (n1, · · · , nk). By

Bezout identity, there exist some a, · · · , ak ∈ Z such that

a1
n1

d
+ · · · ak

nk

d
= 1 .
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For any n, Let m(n1
d + · · · + nk

d ) ⩽ n < (m + 1)(n1
d + · · · + nk

d ), then
δ := n−m(n1

d + · · ·+ nk
d ) < (n1

d + · · ·+ nk
d ). We have

n = m(
n1

d
+ · · ·+ nk

d
) + δ(a1

n1

d
+ · · · ak

nk

d
)

= (m+ a1δ)
n1

d
+ · · · (m+ akδ)

nk

d

=: b1
n1

d
+ · · · bk

nk

d
.

where b1 = m + a1δ, · · · , bk = m + akδ. For sufficiently large n, we can let
b1, · · · , bk ⩾ 1, so

p
(nd)
ii ⩾ (p

(n1)
ii )b1 · · · (p(n1)

ii )bk > 0 .

Lemma 1.37. periodicity is a class property, i.e., i communicates with j ,
then they have the same period.

Proof. Assume i has period di and j has period dj . Since i communicates
with j, there exists some positive integers m and l such that p

(m)
ij > 0 and

p
(l)
ji > 0. So when n is sufficiently large,

p
(m+ndj+l)
ii ⩾ p

(m)
ij p

(nd)
jj p

(l)
ji > 0 .

Then we have di | dj . Samely, dj | di, So di = dj .

Therefore, we can say a ireducible Markov chain has period d, that means
every state has peeiod d.

Theorem 1.38. Let P be irreducible has period d. There is a partition

I = D0 ∪D1 ∪ . . . ∪Dd−1 (1.17)

such that (setting Dnd+r = Dr )

(i) p
(n)
ij > 0 only if i ∈ Dr and j ∈ Dr+n for some r.

(ii) For any r = 0, · · · d−1 and i, j ∈ Dr, p(nd)ij > 0 for all sufficiently large
n, i.e., there is Nij ∈ N+ such that for any n ⩾ Nij we have p

(nd)
ij > 0.
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Remark. From (i) we can see chat P can write as block diagonal matrix as
the following form:

0 P |D0,D1

0 0 P |D1,D2

...
... . . . . . .

0 0
. . . P |Dd−2Dd−1

P |Dd−1D0 0 · · · 0


From (ii), We can see that D0, · · ·Dd−1 is all the communicating class of P d,
also P d can write as block diagonal matrix as the following form:

P d|D0

. . .
P d|Dd−1



Proof. Take any state k fixed, and for any r = 0, · · · d− 1,

Dr := {j : ∃ n s.t. p
(nd+r)
kj > 0} .

Obviously, ∪d−1
r=0Dr = I. Let 0 ⩽ r1 6= r2 ⩽ d − 1, We need to show that

Dr1 ∩Dr2 = ∅. If not, assume p
(n1d+r1)
kj > 0 and p

(n2d+r2)
kj > 0. Since P is

irreducible, there is some integer l such that p
(l)
jk > 0. Then p

(n1d+r1+l)
kk > 0

and p
(n2d+r2+l)
kk > 0. So d | r1 + l and d | r2 + l, then d | (r1 − r2), r1 = r2.

We arrive at a contradiction. Hence we have a partition.
Let i ∈ Dr and p

(n)
ij > 0, we show that j ∈ Dr+n. Since i ∈ Dr, there

exists n1 such that p
(n1d+r)
kj > 0, so p

(n1d+r+n)
kj ⩾ p

(n1d+r)
ki p

(n)
ij > 0. Hence we

have j ∈ Dr+n.
Let i, j ∈ Dr, we prove that p

(nd)
ij > 0 for sufficiently large n. Assume

p
(l)
ik > 0, p

(n1d+r)
ki > 0 and p

(n2d+r)
kj > 0. Then p

(n1d+r+l)
ii > 0. We have

d | r+ l because i has period d. Then for sufficiently large n, p(l+nd+n2d+r)
ij ⩾

p
(l)
ik p

(nd)
kk p

(n2d+r)
kj > 0. Let r+l+n2d = n3d, that is p(nd+n3d)

ij > 0. So p
(nd)
ij > 0

for sufficiently large n.
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Theorem 1.38 表明从某一块区域中的任意状态出发, 走一步必然到下一
块区域中. 应该强调, 仅有 (i) 成立, 而 (ii) 不成立不能保证 d 是马氏链的

周期.

¶ Example 1.39. Figure 1.6 中马氏链周期为 6, 但是其中的分块也满足
Theorem 1.38 的 (i).

34 1�Ù ê¼ó
§1.7 rH{½n�!ïÄéu�©©Ùµ, ê¼ó3�Ǒn �©ÙµPn �4�. ·�UYb�P Ø��.{üå�, ·�E,k?Øli Ñu�ê¼ó, =µi = 1, d�, ê¼ó3�Ǒn �©ÙÒ´p(n)ij , j ∈ S. �n��(Ø´, XJØC©Ù�3, §¬ÂñuØC©Ùπi, i ∈ S. �´, ²LéG��mþ�=£VÇã�Ú©Û, ·�êþÒ¬uyù��(ØØ¤á. ~X,

Erhenfest�..~1.7.1. (~ 1.1.6, ~ 1.5.7 Ú~ 1.6.8Y) Ehrenfest�.�±Ï5.Tê¼ó�G��mǑS = {0, 1 · · · , N}, =£VÇǑpi,i−1 = 1 − pi,i+1 = i/N . Tê¼óØ��, �3~ 1.6.8¥��πi = Ci
N/2

N . b�ê¼ól0 Ñu, XJ²LÛêÚ, K§�
!��a�gê7,Ø�, u´§Ø�U£�0. ù`², p
(2n+1)
00 = 0, ∀n ≥ 0. §Ø�Uªuπ0. 23Ehrenfest�.¥, du=£VÇ�AÏ5, G��mS �©Ǒü¬«�, �¬d¤kÛê|¤, ,�¬d¤kóê|¤. lÙ¥�¬�?¿G�Ñu, r�Ú7,�,	�¬¥.u´, ÷ê¼ó�;�w, ÙG�Ò¬Û!ó!Û!ó· · · ��OÑy. ·��Ǒù��;�¥y
�½�±Ï5,d?,±ÏǑd = 2. dul��G�j Ñu, âf7L²{��±ÏâU£�gC¤3���¬«�¥, ù`²p(n)jj = 0 3n Ø´d ��ê��´0, u´§Ø�UÂñ�πj . Ïd, ����n��(Øp(n)ij → πj , ·�Äk�üØù��±Ï5.½n1.7.2. �P Ø��, K�3�����êd ±9S ���©�D0, D1, · · · , Dd−1 (é?ÛnÖ¿½ÂDnd+r := Dr), ��:

(1) ∀ r ≥ 0, ∀ i ∈ Dr, ∀ s ≥ 0,
∑

j∈Dr+s
p
(s)
ij = 1;

(2) ∀ r ≥ 0, ∀ i, j ∈ Dr, ∃ N ≥ 0 ��p(nd)ij > 0, ∀n ≥ N .

 

  

1 

2 3 

4 5 

6 1 

2 3 

4 5 

D0 

D1 

D2 

Dd-1 

Dd-2 ã 1.7: ±Ï½Â1.7.3. ½n1.7.2 ¥�d �¡ǑP 9ÙéAê¼ó�±Ï(period). e=£Ý
�½, ·�Ǒ¡§ǑS �±Ï. eP �±ÏǑ1, K¡P (½éAê¼ó, ½S) ´�±Ï�(aperiodic).

Figure 1.6: Counterexample

1.8.2 Limitting behavior of p
(n)
ij

Here is the main result of this section. The method of proof, by coupling
two Markov chains, is ingenious.

Theorem 1.39 (Convergence to equilibrium). Let P be irreducible,
positive recurrent and aperiodic, π is the unique invariant distribution. Then
for all i, j ∈ I,

p
(n)
ij → πj , as n → ∞

In fact, suppose that (Xn)n⩾0 is Markov (λ, P ), where λ is any initial dis-
tribution. Then PXn → π in total variance distance dTV , i.e.,∑

j∈I
|P (Xn = j)− πj | → 0, as n → ∞ .

Proof. We use a coupling argument. Let (Yn)n⩾0 be Markov (π, P ) and
independent of (Xn)n⩾0 . Fix a reference state b and set

τ = inf {n ⩾ 1 : Xn = Yn = b} .
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Step 1. We show P(T < ∞) = 1. The process Wn = (Xn, Yn) is a
Markov chain on I × I with transition probabilities

p̃(i,k)(j,l) = pijpkl

and initial distribution
µ(i,k) = λiπk

since P is aperiodic, for all states i, j, k, l we have

p̃
(n)
(i,k)(j,l) = p

(n)
ij p

(n)
kl > 0

for all sufficiently large n; so P is irreducible. Also, P has an invariant
distribution given by

π̃(i,k) = πiπk .

So P̃ is positive recurrent. But τ is the first passage time of Wn to (b, b) so
P(T < ∞) = 1.

Step 2. Set

Zn =

{
Xn, if n ⩽ τ .

Yn, if n > τ.

The diagram below illustrates the idea. It’s easy to show that (Zn)n⩾0 is
Markov (λ, P ).

Step 3. We have

P (Zn = j) = P (Xn = j and n < T ) + P (Yn = j and n ⩾ T ) .

Hence∑
j∈I

|P (Xn = j)− πj | =
∑
j∈I

|P (Zn = j)− P (Yn = j) |

=
∑
j∈I

|P (Xn = j, n ⩽ τ)− P (Yn = j, n ⩽ τ) |

⩽
∑
j∈I

P (Xn = j, n ⩽ τ) + P (Yn = j, n ⩽ τ)

= 2P (n ⩽ τ) .

and P(n ⩽ τ) → 0 as n → ∞.
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42 1. Discrete-time Markov chains

Step 2. Set

Zn =
{
Xn if n < T

Yn if n ≥ T .

The diagram below illustrates the idea. We show that (Zn)n≥0 is
Markov(λ,P ).

b
n

b
n

I

Xn

Yn

****

***
*

**
**

**
**

***
**

**
*********

********

****
* * *

Zn

T

The strong Markov property applies to (Wn)n≥0 at time T , so
(XT+n, YT+n)n≥0 is Markov(δ(b,b), P̃ ) and independent of (X0, Y0),
(X1, Y1), . . . , (XT , YT ). By symmetry, we can replace the process
(XT+n, YT+n)n≥0 by (YT+n,XT+n)n≥0 which is also Markov(δ(b,b), P̃ ) and
remains independent of (X0, Y0), (X1, Y1), . . . , (XT , YT ). Hence W ′

n =
(Zn, Z

′
n) is Markov(µ, P̃ ) where

Z ′
n =

{
Yn if n < T

Xn if n ≥ T .

In particular, (Zn)n≥0 is Markov(λ,P ).

Step 3. We have

P(Zn = j) = P(Xn = j and n < T ) + P(Yn = j and n ≥ T )

so

|P(Xn = j) − πj | = |P(Zn = j) − P(Yn = j)|
= |P(Xn = j and n < T ) − P(Yn = j and n < T )|
≤ P(n < T )

and P(n < T ) → 0 as n→ ∞.

Figure 1.7: Xn, Yn and Zn

To understand this proof one should see what goes wrong when P is
not aperiodic. Consider the two-state chain of Example 1.38 which has
(1/2, 1/2) as its unique invariant distribution. (Xn)n⩾0 We start (Xn)n⩾0

from 0 and (Yn)n⩾0 with equal probability from 0 or 1. However, if Y0 = 1,
then, because of periodicity, (Xn)n⩾0 and (Yn)n⩾0 will never meet, and the
proof fails.

Theorem 1.40. Let P be irreducible, aperiodic and null recurrent. Then
for all i, j ∈ I,

p
(n)
ij → 0 , as n → ∞ .

In fact, for any initial distribution λ, suppose that (Xn)n⩾0 is Markov (λ, P ),
then

P (Xn = j) → 0, as n → ∞ .

Proof. Return to the coupling argument used in Theorem 1.39 , only now let
(Yn)n⩾0 be Markov (µ, P ), where µ is to be chosen later. Set Wn = (Xn, Yn).
As before, aperiodicity of (Xn)n⩾0 ensures irreducibility of (Wn)n⩾0 .
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If (Wn)n⩾0 is transient then, on taking µ = λ, we obtain

P (Xn = j)2 = P (Wn = (j, j)) → 0

as required.
Now assume (Wn)n⩾0 is recurrent. Using the same argument in Theorem

1.39, we have P(τ < ∞) = 1, we have that

|P (Xn = j)− P (Yn = j)| → 0 .

We exploit this convergence by taking µ = λP k for k ∈ N+ so that

|P (Xn = j)− P (Xn+k = j)| → 0 . (1.18)

(⋆) If we can prove that for any ϵ > 0, there is some K = Kϵ such that

min
0⩽k⩽K

P (Xn+k = j) < ϵ, for any n ∈ N+ .

Then from (1.18) we konw for the ϵ given previously, there is N = Nϵ > 0

such that for any n ⩾ N , there holds

max
0⩽k⩽K

|P (Xn = j)− P (Xn+k = j)| < ϵ . (1.19)

We can see that P (Xn = j) < 2ϵ for any n ⩾ N . So, P (Xn = j) → 0.
If (⋆) doesn’t hold, there is some ϵ0 > 0, for any positive integer K, there

exist a m = m(K) such that

P (Xm+k = j) ⩾ ϵ0, k = 0, 1, · · · ,K .

Note that for any k = 0, 1, 2, · · ·K,

P (Xm+k = j)Pj (σj > K − k)

= P
(

sup{n : Xn = j, n ⩽ m+K } = m+ k
)
,

and
K∑
k=0

P
(

sup{n : Xn = j, n ⩽ m+K } = m+ k
)
= 1
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So we have

1 =
K∑
k=0

P (Xm+k = j)Pj (σj > K − k)

⩾ ϵ0

K∑
k=0

Pj (σj > K − k) = ϵ0

K∑
k=0

Pj (σj > k) .

Since K is arbitrary, we have
∑∞

k=0 Pj (σj > k) < ∞. But P is null recurrent,
we have

Ej (σj) =
∞∑
k=0

Pj (σj > k) = ∞ .

This is a contradiction.

Combine Theorem 1.39 and Theorem 1.40, we have

Theorem 1.41. Let P be irreducible, aperiodic. Then for all i, j ∈ I,

p
(n)
ij → 1

mj
, as n → ∞ . (1.20)

In fact, for any initial distribution λ, suppose that (Xn)n⩾0 is Markov (λ, P ),
then

P (Xn = j) → 1

mj
, as n → ∞ .

We move on now to the cases that were excluded in the last theorem,
where (Xn)n⩾0is periodic or transient or null recurrent. Here is a complete
description of limiting behaviour for irreducible chains. This generalizes
Theorem 1.39 in two respects since we require neither aperiodicity nor the
existence of an invariant distribution.

Theorem 1.42. Let P be irreducible of period d and let D0, D1, . . . , Dd−1 be
the partition obtained in Theorem 1.38. For any i ∈ D0 and r = 0, 1, . . . , d−
1, and j ∈ Dr we have

p
(nd+r)
ij → d

mj
as n → ∞.
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In fact, Let λ be a distribution with
∑

i∈D0
λi = 1. Suppose that (Xn)n⩾0

is Markov(λ, P ). Then for j ∈ Dr

P (Xnd+r = j) → d

mj
, as n → ∞

Proof. We reduce to the aperiodic case. Set ν = λP r, by Theorem 1.38 we
have ∑

i∈Cr

νi = 1 .

Set Yn = Xnd+r, then (Yn)n⩾0 is Markov
(
ν, P d

)
and, by Theorem 1.38, P d

is irreducible and aperiodic on Cr. For j ∈ Cr the expected return time of
(Yn)n⩾0 to j is mj/d. By Theorem 1.41, in the aperiodic case, we ahve

P (Xnd+r = j) = P (Yn = j) → d

mj
as n → ∞

so the theorem holds in general.

Corollary 1.43. P is irreducible, then

lim sup
n→∞

p
(n)
ij =

d

mj
, (1.21)

where d is the period of P .

EXERCISE

¶ Exercise 1.40. Assume state i, j ∈ I such that i is transient and j is
recurrent.

(i) j is aperiodic, show that

p
(n)
ij → ρij

mj
, as n → ∞ .

62



(ii) j has period d, show that

p
(nd+r)
ij → d

mj

[ ∞∑
k=0

f
(kd+r)
ij

]
as n → ∞

for any r = 0, 1, · · · , d− 1, where f
(n)
ij = Pi(σj = n).

Hint: Note that in Exercise 1.21 we proved that

p
(n)
ij =

n∑
k=1

f
(k)
ij p

(n−k)
jj for n ⩾ 1

When j is apeiodic, for fixed k we have p
(n−k)
jj → 1/mj . Then use Lebesgue

domainted convergence theorem: Let µ be a finite measure on N such that
µ(k) = f

(k)
ij . For any n, let gn(k) = p

(n−k)
jj for k ⩽ n and = 0 for k > n,

g(k) = 1/mj is constant function, thus we have gn → g a.e. Note that
gn ⩽ 1, by Lebesgue domainted convergence theorem:

p
(n)
ij =

n∑
k=1

f
(k)
ij p

(n−k)
jj =

∫
N
gn dµ →

∫
N
g dµ =

∞∑
k=1

f
(k)
ij

1

mj
=

ρij
mj

.
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Chapter 2

Continuous-time Markov
chains

2.1 Right Continuous random processes

Let I be a countable set with discrete topology, and B(I) is the Borel
algebra on I. A random vectors

X : (Ω,F) → (I [0,∞),B(I)[0,∞)) ; ω 7→ (Xt(ω))t⩾0

is called a continuous-time random process with values in I. Equiv-
alently, a continuous-time random process is a family of random variables
Xt : Ω → I for all t ⩾ 0. Sometimes, we need

X : (Ω× [0,∞) ,F × B[0,∞)) → R ; (ω, t) 7→ Xt(ω)

is measurable.

We are going to consider ways in which we might specify the proba-
bilistic behaviour (or law ) of (Xt)t⩾0. These should enable us to find,
at least in principle, any probability connected with the process, such as
P (Xt = i for some t) . There are subtleties in this problem not present in
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the discrete-time case. They arise because, for a countable disjoint union

P

(⋃
n

An

)
=
∑
n

P (An) .

whereas for an uncountable union ∪t⩾0At there is no such rule. But

{Xt = i for some t ∈ [0,∞)} =
⋃
t⩾0

{Xt = i}

To avoid these subtleties as far as possible we shall restrict our attention to
processes (Xt)t⩾0 which are right-continuous.

Definition 2.1. A continuous-time random process (Xt)t⩾0 with values in
I is called right-continuous if for any fixed ω ∈ Ω, [0,∞) → I; t 7→ Xt(ω)

is right-continuous, where I equipped with discrete topology.

Clearly, (Xt)t⩾0 is right-continuous means that, for each ω ∈ Ω and
t ⩾ 0, there exists δ > 0, depending on ω and t, such that

Xs(ω) = Xt(ω) , for all s ∈ [t, t+ δ] . (2.1)

For example, we can now deduce that

{Xt = i for some t ∈ [0,∞)} =
⋃
t⩾0

{Xt = i} =
⋃

r∈Q+

{Xr = i} .

and following this we can compute the probability of {Xt = i for some t ∈ [0,∞)}.

Three possibilities for the sorts of path Every path t 7→ Xt(ω) of a
right-continuous process must remain constant for a while in each new state,
so there are three possibilities for the sorts of path we get.

In the first case the path makes infinitely many jumps, but only finitely
many in any interval [0, t].
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68 2. Continuous-time Markov chains I

Every path t �→ Xt(ω) of a right-continuous process must remain con-
stant for a while in each new state, so there are three possibilities for the
sorts of path we get. In the first case the path makes infinitely many jumps,
but only finitely many in any interval [0, t]:

t

Xt(ω)

S1 S2 S3 S4 S5 S6

J0 = 0 J1 J2 J3 J4 J5

The second case is where the path makes finitely many jumps and then
becomes stuck in some state forever:

t

Xt(ω)

S1 S2 S3 = ∞

J0 = 0 J1 J2

In the third case the process makes infinitely many jumps in a finite interval;
this is illustrated below. In this case, after the explosion time ζ the process
starts up again; it may explode again, maybe infinitely often, or it may
not.

The second case is where the path makes finitely many jumps and then
becomes stuck in some state forever:
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Every path t �→ Xt(ω) of a right-continuous process must remain con-
stant for a while in each new state, so there are three possibilities for the
sorts of path we get. In the first case the path makes infinitely many jumps,
but only finitely many in any interval [0, t]:

t

Xt(ω)

S1 S2 S3 S4 S5 S6

J0 = 0 J1 J2 J3 J4 J5

The second case is where the path makes finitely many jumps and then
becomes stuck in some state forever:

t

Xt(ω)

S1 S2 S3 = ∞

J0 = 0 J1 J2

In the third case the process makes infinitely many jumps in a finite interval;
this is illustrated below. In this case, after the explosion time ζ the process
starts up again; it may explode again, maybe infinitely often, or it may
not.

In the third case the process makes infinitely many jumps in a finite
interval; this is illustrated below. In this case, after the explosion time ζ the
process starts up again; it may explode again, maybe infinitely often, or it
may not.
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2.2 Continuous-time random processes 69

t

Xt(ω)

S1 S2 S3 S4 S5

J0 = 0 J1 J2 J3 J5J4 ζ

We call J0, J1, . . . the jump times of (Xt)t≥0 and S1, S2, . . . the holding
times. They are obtained from (Xt)t≥0 by

J0 = 0, Jn+1 = inf{t ≥ Jn : Xt �= XJn
}

for n = 0, 1, . . . , where inf ∅ = ∞, and, for n = 1, 2, . . . ,

Sn =
{
Jn − Jn−1 if Jn−1 <∞
∞ otherwise.

Note that right-continuity forces Sn > 0 for all n. If Jn+1 = ∞ for some
n, we define X∞ = XJn

, the final value, otherwise X∞ is undefined. The
(first) explosion time ζ is defined by

ζ = sup
n
Jn =

∞∑
n=1

Sn.

The discrete-time process (Yn)n≥0 given by Yn = XJn
is called the jump

process of (Xt)t≥0, or the jump chain if it is a discrete-time Markov chain.
This is simply the sequence of values taken by (Xt)t≥0 up to explosion.

We shall not consider what happens to a process after explosion. So it
is convenient to adjoin to I a new state, ∞ say, and require that Xt = ∞
if t ≥ ζ. Any process satisfying this requirement is called minimal . The
terminology ‘minimal’ does not refer to the state of the process but to the

Jump times, holding times We call J0, J1, · · · the jump times of (Xt)t⩾0

and S1, S2, · · · the holding times. They are obtained from (Xt)t⩾0 by

J0 = 0, Jn+1 = inf {t ⩾ Jn : Xt 6= XJn}

for n = 0, 1, · · · , where inf ∅ = ∞, and, for n = 1, 2, · · ·

Sn =

{
Jn − Jn−1 if Jn−1 < ∞
∞ otherwise.

Note that right-continuity forces Sn > 0 for all n. If Jn+1 = ∞ for some n,

we define X∞ = XJn , the final value, otherwise X∞ is undefined.

Explosion time, embedded chain The (first) explosion time ζ is defined
by

ζ = sup
n

Jn =
∞∑
n=1

Sn

The discrete-time process (Yn)n⩾0 given by Yn = XJn is called the jump
process of (Xt)t⩾0 , or the embedded chain (jump chain) if it is a discrete-
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time Markov chain. This is simply the sequence of values taken by (Xt)t⩾0

up to explosion.

Minimal process We shall not consider what happens to a process after
explosion. So it is convenient to adjoin to I a new state, ∞ (or ∂) say, and
require that Xt = ∞ (or Xt = ∂ ) if t ⩾ ζ. Any process satisfying this
requirement is called minimal. The terminology “minimal” does not refer
to the state of the process but to the interval of time over which the process
is active.

Note that a minimal process may be reconstructed from its holding times
and jump process. Thus by specifying the joint distribution of S1, S2, · · ·
and (Yn)n⩾0 we have another “countable’ specification of the probabilistic
behaviour of (Xt)t⩾0. For example,

{Xt = i for some t ∈ [0,∞)} = {Yn = i for some n ∈ N} .

Consider now the method of describing a minimal right-cont-continuous
process (Xt)t⩾0 via its jump process (Yn)n⩾0 and holding times (Sn)n⩾1 . Let
us take

F = σ (Xt : t ⩾ 0) and G = σ
(
(Yn)n⩾0 , (Sn)n⩾1

)
.

Firstly, for all i ∈ I

{Xt = i} =
⋃
n⩾0

{Yn = i} ∩ {Jn ⩽ t < Jn+1} ∈ G ,

which deduces that F ⊂ G. Intuitively, G ⊂ F , but there’s a little bit of
troubles to prove it rigorously.

Denote by Ft the σ-algebra generated by {Xs : s ⩽ t}. We say that a
random variable T with values in [0,∞] is a stopping time of (Xt)t⩾0 if
{T ⩽ t} ∈ Ft for all t ⩾ 0. Note that this certainly implies

{T < t} =
⋃
n

{
T ⩽ t− 1

n

}
∈ Ft for all t ⩾ 0.
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We define for stopping times T ,

FT = {A ∈ F : A ∩ {T ⩽ t} ∈ Ft for all t ⩾ 0} .

This turns out to be the correct way to make precise the notion of sets
which “depend only on {Xt : t ⩽ T}”, somwtimes we use ‘σ({Xt : t ⩽ T})’
to indicate this.

Lemma 2.1. Let T be a stopping time of (Xt)t⩾0. Then XT is FT -measurable.

Proof. In order to show XT is FT -measurable, it suffices to show that for
each i ∈ I,

{XT = i} ∩ {T ⩽ t} ∈ Ft .

Clearly, {XT = i} ∩ {T < t} ∈ Ft, so we need to prove

{XT = i} ∩ {T < t} ∈ Ft .

Since (Xt)t⩾0 is right-continuous, on {T < t} there exists an (random) N ⩾ 0

such that, for all n ⩾ N , there exists k ⩾ 1,
k − 1

2n
⩽ T <

k

2n
< t and X k

2n
= XT .

Hence
{XT = i} ∩ {T < t}

=
∞⋃

N=0

∞⋂
n=N

[2mt]⋃
k=1

{
X k

2n
= i
}
∩
{
k − 1

2n
⩽ T <

k

2n

}
∈ Ft

so XT is FT -measurable.

Lemma 2.2. Let S and T be stopping times of (Xt)t⩾0 . Then

{S > T} ∈ FT , {S ⩽ T} ∈ FT .

Proof. We have

{S > T} ∩ {T ⩽ t} =
⋃

s∈Q+,s⩽t

{T ⩽ s} ∩ {S > s} ∈ Ft ,

so {S > T} ∈ FT , and so {S ⩽ T} ∈ FT .
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Lemma 2.3. For each n ⩾ 0, the jump time Jn is a stopping time of (Xt)t⩾0.

Proof. Obviously, J0 = 0 is a stopping time. Assume inductively that Jn is
a stopping time. Then for all t > 0,

{Jn+1 < t} =
⋃

s∈Q+,s⩽t

{Jn < s} ∩ {Xs 6= XJn} ∈ Ft

{Jn+1 = t} =
⋃

s∈Q+,s⩽t

{Jn < s}
⋂

s′∈Q+

s⩽s′<t

{Xs = XJn} ∈ Ft .

so Jn+1 is a stopping time and the induction proceeds.

Now, by the three lemmas above, we (Yn)n≥0 and (Sn)n≥1 are F-measurable.
Thus G ⊂ F . Therefore we get F = G, i.e.,

σ (Xt : t ⩾ 0) = σ
(
(Yn)n⩾0 , (Sn)n⩾1

)
. (2.2)
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2.2 Poisson processes

Poisson processes are some of the simplest examples of continuous-time
Markov chains. We shall also see that they may serve as building blocks
for the most general continuous-time Markov chain. Moreover, a Poisson
process is the natural probabilistic model for any uncoordinated stream
ofdiscrete events in continuous time. So we shall study Poisson processes
first, both as a gentle warm-up for the general theory and because they are
useful in themselves. We shall begin with a definition in terms of jump chain
and holding times.

Definition 2.2. A right-continuous process (Nt)t⩾0 with values in {0, 1, 2, · · · }
is a Poisson process of rate λ, where λ ∈ (0,∞), if its holding times
S1, S2, · · · are independent exponential random variables of parameter λ

and its jump chain is given by Yn = n.

Remark. Given the distribution of the jump times and jump chian, the law
of (Nt)t⩾0 is uniquely determined.

Here is the diagram of the Poisson process,

74 2. Continuous-time Markov chains I

theorems and examples that follow. We shall begin with a definition in
terms of jump chain and holding times (see Section 2.2). A right-continuous
process (Xt)t≥0 with values in {0, 1, 2, . . . } is a Poisson process of rate λ

(0 < λ < ∞) if its holding times S1, S2, . . . are independent exponential
random variables of parameter λ and its jump chain is given by Yn = n.
Here is the diagram:

0 1 2 3 4

λ λ λ λ

The associated Q-matrix is given by

Q =


−λ λ

−λ λ
. . . . . .

 .

By Theorem 2.3.2 (or the strong law of large numbers) we have
P(Jn → ∞) = 1 so there is no explosion and the law of (Xt)t≥0 is uniquely
determined. A simple way to construct a Poisson process of rate λ is to
take a sequence S1, S2, . . . of independent exponential random variables of
parameter λ, to set J0 = 0, Jn = S1 + . . . + Sn and then set

Xt = n if Jn ≤ t < Jn+1.

t
0

1

2

3

4

5

Xt

S1 S2 S3 S4 S5 S6

J0 = 0 J1 J2 J3 J4 J5

Figure 2.1: Poisson process of rate λ

and the associated Q-matrix is given by

Q =


−λ λ

−λ λ
. . . . . .

 (2.3)

Using the strong law of large numbers, we have P (Jn → ∞) = 1, so there is
no explosion in Poisson process.
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Why is the process defined above called “Poisson”?

Theorem 2.4. For each t > 0, Nt has a Poisson(λt) distribution.

Proof. For any n ∈ N,

P(Nt = n) = P(Jn ⩽ t < Jn+1) =

∫ t

0
fJn(s)P (Sn+1 > t− s) ds

Note that Jn = S1 + · · ·Sn has a gamma(n, λ) distribution, that is

fJn(s) = λe−λs · (λs)
n−1

(n− 1)!
1{s>0} .

So we have

P(N(t) = n) =

∫ t

0
λe−λs (λs)

n−1

(n− 1)!
· e−λ(t−s)ds

=
λn

(n− 1)!
e−λt

∫ t

0
sn−1ds = e−λt (λt)

n

n!
,

which proves the desired result.

Construct a Poisson process A simple way to construct a Poisson pro-
cess of rate λ is to take a sequence S1, S2, · · · of independent exponential
random Variables of parameter λ, to set J0 = 0, Jn = S1 + · · · + Sn, then
set

Nt = n if Jn ⩽ t < Jn+1 (2.4)

or equivalently

Nt =
∞∑
n=1

1{Jn⩽t} for all t ⩾ 0 . (2.5)

The following diagram illustrates a typical path, and it’s easy to check that
{Jn} is exactly the jump times of the right-continuous process (Nt)t⩾0.
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theorems and examples that follow. We shall begin with a definition in
terms of jump chain and holding times (see Section 2.2). A right-continuous
process (Xt)t≥0 with values in {0, 1, 2, . . . } is a Poisson process of rate λ

(0 < λ < ∞) if its holding times S1, S2, . . . are independent exponential
random variables of parameter λ and its jump chain is given by Yn = n.
Here is the diagram:

0 1 2 3 4

λ λ λ λ

The associated Q-matrix is given by

Q =


−λ λ

−λ λ
. . . . . .

 .

By Theorem 2.3.2 (or the strong law of large numbers) we have
P(Jn → ∞) = 1 so there is no explosion and the law of (Xt)t≥0 is uniquely
determined. A simple way to construct a Poisson process of rate λ is to
take a sequence S1, S2, . . . of independent exponential random variables of
parameter λ, to set J0 = 0, Jn = S1 + . . . + Sn and then set

Xt = n if Jn ≤ t < Jn+1.

t
0

1

2

3

4

5

Xt

S1 S2 S3 S4 S5 S6

J0 = 0 J1 J2 J3 J4 J5

Figure 2.2: Construct a Poisson process

Markov property We now show how the memoryless property of the
exponential holding times, leads to a memoryless property of the Poisson
process.

Theorem 2.5 (Markov property). Let (Nt)t⩾0 be a Poisson process of
rate λ. Then, for any s > 0, (Ns+t −Ns)t⩾0 is also a Poisson process of rate
λ, independent of {Nt : t ⩽ s}.

Proof. Let Ñt = Nt+s−Ns for all t ⩾ 0. Clearly, (Ñt)t⩾0 is a integer valued,
increasing, right-continuous process starting at 0. Its jump times are given
by J̃0 = 0 and

J̃n = JN(s)+1 − s for n ⩾ 1 .

Hence the holding times are

S̃1 = JN(s)+1 − s and S̃n = SN(s)+n for n ⩾ 2 .
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It suffices to show that {S̃n} is sequence of i.i.d r.v.’s with exponential dis-
tribution of parameter λ, and independent of (Nt)0⩽t⩽s.

For any real numbers t1, · · · , tn ∈ (0,∞), 0 ⩽ s1 < · · · < sm ⩽ s, and
non-negative integers 0 ⩽ k1 ⩽ · · · ⩽ km−1 < km = k, ¶

P
(
S̃1 > t1, · · · , S̃n > tn; N(s) = k,N(s1) = k1, · · · , N(sm) = km

)
= P

(
Jk+1 − s > t1, Sk+i > ti, 2 ⩽ i ⩽ n; Jk ⩽ sm, Jkj ⩽ sj < Jkj+1, 1 ⩽ j < m

)
,

we denote by A the event {Jkj ⩽ sj < Jkj+1, 1 ⩽ j < m}, then

P
(
S̃1 > t1, · · · , S̃n > tn; N(s) = k,N(s1) = k1, · · · , N(sm) = km

)
= e−λ(t2+···+tn) × P

(
{Sk+1 > t1 + s− Jk} ∩ {Jk ⩽ sm} ∩A

)
,

and let A′ = {x1 + · · ·xkj ⩽ sj < x1 + · · ·xkj+1 , 1 ⩽ j < m},

P ({Sk+1 > t1 + s− Jk} ∩ {Jk ⩽ sm} ∩A)

=

∫
x1,··· ,xm>0

P
(
Sk+1 > t1 + s−

∑
xj
)
1{

∑
xj⩽sm}1A′ dx1 · · · dxm

by memoryless property of the exponential distributions,

=

∫
x1,··· ,xm>0

P
(
Sk+1 > t1

)
P
(
Sk+1 > s−

∑
xj
)
1{

∑
xj⩽sm}1A′ dx1 · · · dxm

= e−λt1

∫
x1,··· ,xm>0

P
(
Sk+1 > s−

∑
xj
)
1{

∑
xj⩽sm}1A′ dx1 · · · dxm

= e−λt1 P ({Sk+1 > s− Jk} ∩ {Jk ⩽ sm} ∩A)

= e−λt1 P ({Jk ⩽ sm < s < Jk+1} ∩A) .

Thus we get

P
(
S̃1 > t1, · · · , S̃n > tn; N(s) = k,N(s1) = k1, · · · , N(sm) = km

)
= e−λ(t1+t2+···+tn) × P

(
{Jk ⩽ sm ⩽ s < Jk+1} ∩A

)
,

= e−λ(t1+t2+···+tn) × P
(
N(s) = k,N(s1) = k1, · · · , N(sm) = km

)
.

¶We let km−1 < km = k, in ordet that we can write {N(s) = k,N(s1) =

k1, · · · , N(sm) = km} as {Jk+1 > s} ∩ {Jkj ⩽ sj < Jkj+1, 1 ⩽ j < m} and the sec-
ond event is in σ(S1, · · · , Sk).
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Thus {S̃n} is sequence of i.i.d r.v.’s with exponential distribution of param-
eter λ, and independent of {Nt : t ⩽ s}.

In fact, we shall see in Section ?? by an argument in essentially the same
spirit that the result also holds with s replaced by any stopping time T of
(Nt)t⩾0.

Theorem (Strong Markov property). Let (Nt)t⩾0 be a Poisson process
of rate λ and let T be a stopping time of (Nt)t⩾0 . Then, conditional on
T < ∞ ,

(NT+t −NT )t⩾0

is also a Poisson process of rate λ, independent of (Ns)s⩽T .

Alternative definitions We come to the key result for the Poisson pro-
cess, which gives two conditions equivalent to the jump chain/holding time
characterization which we took as our original definition. Thus we have
three alternative definitions of the same process.

Theorem 2.6. Let (Nt)t⩾0 be an increasing, right-continuous, integer-valued
process starting from 0. Let λ ∈ (0,∞), then the following three conditions
are equivalent:

(i) (jump chain/holding time definition) the holding times S1, S2, . . . of
(Nt)t⩾0 are independent exponential random Variables of parameter λ
and the jump chain is given by Yn = n for all n;

(ii) (transition probability definition) (Nt)t⩾0 has stationary independent
increments and, for each t > 0, Nt has Poisson(λt) distribution.

(iii) (infinitesimal definition) (Nt)t⩾0 has independent increments and, as
h ↓ 0, uniformly in t, ·

P (Nt+h −Nt = 0) = 1− λh+ o(h), P (Nt+h −Nt = 1) = λh+ o(h) .
·Uniformly in t implies “ stationary increments ”.
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If (Nt)t⩾0 satisfies any of these conditions then it is called a Poisson
process of rate λ.

Proof. (i) ⇔ (ii). If (i) holds, then, by the Markov property, Theorem 2.5,
(Nt)t⩾0 has stationary independent increments. By Theorem 2.4, we have
proved (ii). If (ii) holds, the finite-dimensional distributions of (Nt)t⩾0 is
uniquely determined, and hence the distribution of jump chain and holding
times.

(ii) ⇔ (iii). If (ii) holds, then for any t, h ⩾ 0,

P (Xt+h −Xt = 0) = P (Xh = 0) = e−λh = 1− λh+ o(h)

P (Xt+h −Xt = 1) = P (Xh = 1) = λhe−λh = λh+ o(h) .

which implies (iii). To show the other hand, if (iii) holds, then, for i ⩾ 2,
we have P (Xt+h −Xt = i) = o(h) as h ↓ 0, uniformly in t. Set p0j(t) =

P (Xt = j) . Then, for j = 1, 2, . . .,

p0j(t+ h) = P (Xt+h = j) =

j∑
i=0

P (Xt+h −Xt = i)P (Xt = j − i)

=
(
1− λh+ o(h)

)
p0j(t) +

(
λh+ o(h)

)
p0j−1(t) + o(h) ,

so
p0j(t+ h)− p0j(t)

h
= −λp0j(t) + λp0j−1(t) + o(1) .

since this estimate is uniform in t we can put t = s − h to obtain for all
s ⩾ h,

p0j(s)− p0j(s− h)

h
= −λp0j(s− h) + λp0j−1(s− h) + o(1)

Now let h ↓ 0 to see that p0j(t) is first continuous and then differentiable
and satisfies the differential equation

p′0j(t) = −λp0j(t) + λp0j−1(t) .

By a simpler argument we also find

p′00(t) = −λp00(t) .
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Since X0 = 0 we have initial conditions

p00(0) = 1, p0j(0) = 0 for j ⩾ 1 .

This system of equations has a unique solution given by

p0j(t) = e−λt (λt)
j

j!
for j ⩾ 0 .

Hence Nt has a Poisson(λt) distribution. If (Xt)t⩾0 satisfies (iii), then
(Xs+t −Xs)t⩾0 satisfies (iii), so the above argument shows Nt+s − Ns has
has a Poisson(λt) distribution for any s, which implies (ii).

The differential equations which appeared in the proof are really the
forward equations for the Poisson process. To make this clear, consider the
possibility of starting the process from i at time 0, writing Pi as a reminder,
and set

pij(t) = Pi (Xt = j)

Then, by spatial homogeneity pij(t) = p0j−i(t), and we could rewrite the
differential equations as

p′i0(t) = −λpi0(t) , pi0(0) = δi0

p′ij(t) = λpi,j−1(t)− λpij(t) , pij(0) = δij

or, in matrix form, for Q as above,

P ′(t) = P (t)Q, P (0) = I .

Theorem 2.6 contains a great deal of information about the Poisson
process of rate λ. It can be useful when trying to decide whether a given
process is a Poisson process as it gives you three alternative conditions to
check, and it is likely that one will be easier to check than another. On
the other hand it can also be useful when answering a question about a
given Poisson process as this question may be more closely connected to
one definition than another. For example, you might like to consider the
difficulties in approaching the next result using the jump chain/holding time
definition.
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2.2.1 Compound Poisson Processes

Suppose that between 12: 00 and 1: 00 cars arrive at a fast food restu-
arant according to a Poisson process (Nt)t⩾0 with rate λ. Let Yn be the
number of people in the n th vehicle which we assume to be i.i.d. and inde-
pendent o (Nt)t⩾0. Having introduced the Yn’s, it is natural to consider the
sum of the Yn’s we have seen up to time t :

S(t) = Y1 + · · ·+ YN(t) (2.6)

where we set S(t) = 0 if N(t) = 0. In the motivating example, S(t) gives
the number of customers that have arrived up to time t.

Lemma 2.7. Let Y1, Y2, · · · be i.i.d, N be an nonnegative integer valued
r.v. independent with {Yn} and, let S = Y1 + · · ·+ YN .

(i) If E |Y1| ,EN < ∞, then ES = EN · EY1.

(ii) If EY 2
i ,EN2 < ∞, then Var(S) = EN Var (Yi) + Var(N) (EYi)2.

Remark. Why is this reasonable? The first of these is natural since if
N = n is nonrandom ES = EN · EY1, (i) then results by setting n = EN.

This fact is known as Wald’s equation. The formula in (ii) is more compli-
cated but it clearly has two of the necessary properties:

If N = n is nonrandom, Var(S) = nVar (Yi)
If Yi = c is nonrandom Var(S) = c2 Var(N)

Combining these two observations, we see that EN Var (Yi) is the contribu-
tion to the variance from the variability of the Yi, while Var(N) (EYi)2 is
the contribution from the variability of N.

Proof. Breaking things down according to the value of N ,

ES =
∞∑
n=0

E[S | N = n]P(N = n)

=

∞∑
n=0

nEYi P(N = n) = EN · EYi
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For the second formula we note that when N = n, S = X1 + · · · +Xn has
Var(S) = nVar (Yi) and hence,

E
(
S2|N = n

)
= nVar (Yi) + (nEYi)2

Computing as before we get

ES2 =
∞∑
n=0

E
(
S2|N = n

)
· P (N = n)

=

∞∑
n=0

{
n · Var (Yi) + n2 (EYi)2

}
· P (N = n)

= (EN) · Var (Yi) + EN2 · (EYi)2

To compute the Variance now, we observe that

Var(S) = ES2 − (ES)2

= (EN) · Var (Yi) + EN2 · (EYi)2 − (EN · EYi)2

= (EN) · Var (Yi) + Var(N) · (EYi)2

where in the last step we have used Var(N) = EN2− (EN)2 to combine the
second and third terms.

Corollary 2.8. For any t, ES(t) = λtEY1, and VarS(t) = λtEY 2
1 .

Proof. Note that in the special case of the Poisson, we have EN(t) = λt and
VarN(t) = λt, so the result follows.

2.2.2 Thinning

We will use the discrete i.i.d r.v.’s {Yn}, independent with (Nt)t⩾0 to
split the Poisson process into several, where Yn take values in a conutable
set I. For given j ∈ I, let Nj(t) be the number of n ⩽ N(t) with Yi = j,
that is

Nj(t) =

∞∑
n=1

1{Yn=j,n⩽N(t)} =

∞∑
n=1

1{Jn⩽t,Yn=j} (2.7)

The somewhat remarkable fact is
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Theorem 2.9. (Nj(t))t⩾0 is Poisson process with rate λpj , where pj =

P(Y1 = j). Moreover, {Nj(t)}j∈I is independent.

Proof. To begin, we suppose that P (Yi = 1) = p, P (Yi = 2) = q, and p+q =

1, so there are only two Poisson processes to consider, namely, N1(t) and
N2(t). For 0 = t0 < t1 < · · · < tn < ∞ and kj , mj ∈ N for 1 ⩽ j ⩽ n,

P
(
N1(tj)−N1(tj−1) = kj , N2(tj)−N2(tj−1) = mj ; 1 ⩽ j ⩽ n

)
= P

(
N(tj)−N(tj−1) = kj +mj ; ξj = kj ; 1 ⩽ j ⩽ n

)
where

ξj :=
∑

sj−1<n⩽sj

1{Yn=1} , and sj :=

j∑
i=1

ki +mi .

Clearly, {ξj} is independent r.v.’s with Binomial(kj + mj , p) distribution,
respectively, and independent of {N(t)}. Hence

= P
(
N(tj)−N(tj−1) = kj +mj ; 1 ⩽ j ⩽ n

)
× P

(
ξj = kj ; 1 ⩽ j ⩽ n

)
=

n∏
j=1

P
(
N(tj)−N(tj−1) = kj +mj

)
× P

(
ξj = kj

)
=

n∏
j=1

e−λ(tj−tj−1)
[λ(tj − tj−1)]

kj+mj

(kj +mj)!
× (kj +mj)!

kj !mj !
pkjqmj .

=

n∏
j=1

e−λp(tj−tj−1)
[λp(tj − tj−1)]

kj

kj !
×

n∏
j=1

e−λq(tj−tj−1)
[λq(tj − tj−1)]

mj

mj !

Thus N1(t) is Poisson Process with rate λp, N2(t) is Poisson Process with
rate λq, and N1(t), N2(t) are independent.

Using the same method, one can show that for Y1 = 1, · · · ,m with
probability p1, · · · , pm such that pi + · · · pm = 1, the theorem holds. Then
the general case follows.

Remark. We say that {N(t)}t⩾0 is a (nonhomogeneous) Poisson process
with rate λ(·), if N(0) = 0, and
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• N(t) has independent increments and,

• N(t)−N(s) is Poisson with mean
∫ t
s λ(r)dr.

The thinning results generalizes easily to the nonhomogeneous case : Sup-
pose that in a Poisson process with rate λ, we keep a point that lands at
time t with probability p(t). Then the result is a nonhomogeneous Poisson
process with rate λp(·).

¶ Example 2.1. Ellen catches fish at times of a Poisson process with rate
2 per hour. 40% of the fish are salmon(鲑鱼), while 60% of the fish are
trout(鳟鱼). What is the probability she will catch exactly 1 salmon and 2

trout if she fishes for 2.5 hours?

The total number of fish she catches in 2.5 hours is Poisson with mean 5,
so the number of salmon and the number of trout are independent Poissons
with means 2 and 3. Thus the probability of interest is

e−2 2
1

1!
· e−3 3

2

2!
.

Further theory A Poisson point process on a measure space (S,S, µ) a
random mapping m : S → {0, 1, . . .} that for each ω is a measure on S and
has the following property : if A1, . . . , An are disjoint sets with µ (Ai) < ∞,
then

m (A1) , · · · ,m (An)

are independent and have Poisson distributions with means µ (Ai) . µ is
called the intensity measure of the process.

If µ(S) < ∞ then it follows from Theorem 2.9 that we can construct m by
the following recipe: let X1, X2, . . . be i.i.d. elements of S with distribution
ν(·) = µ(·)/µ(S), let N be an independent Poisson random variable with
mean µ(S), and let

m(A) = # {j ⩽ N : Xj ∈ A} , for all A ∈ S .
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To extend the construction to infinite measure spaces, e.g. , S = Rd, S =

Borel sets, µ = Lebesgue measure, divide the space up into disjoint sets of
finite measure and put independent Poisson processes on each set.

2.2.3 Superposition

Taking one Poisson process and splitting it into two or more by using
an i.i.d. sequence {Yn} is called thinning. Going in the other direction and
adding up a lot of independent processes is called superposition. Since a
Poisson process can be split into independent Poisson processes, it should
not be too surprising that when the independent Poisson processes are put
together, the sum is Poisson with a rate equal to the sum of the rates.

Theorem 2.10. Suppose for j ∈ I, (Nj(t))t⩾0 are independent Poisson
processes with rates λj > 0, respectively, and λ :=

∑
j∈I λj < ∞. Then

N(t) :=
∑
j∈I

Nj(t)

is a Poisson process with rate λ.

Proof. Firstly, for 0 = t0 < t1 < · · · tn < ∞, we have

N(tk)−N(tk−1) =
∑
j∈I

Nj(tk)−Nj(tk−1) , for j ∈ I .

Clearly, {N(tk)−N(tk−1) : k = 1, · · · , n} are independent and by Proposi-
tion 2.27, they are Poisson r.v.’s, with parameter λ(tk − tk−1), respectively.
It’s easy to see that for any ω and t, there are finite many j ∈ I, Nj(t) > 0,
thus N(t) is right-continuous.

2.2.4 Conditioning

Next we establish some relations between Poisson processes and the uni-
form distribution. Notice that the conclusions are independent of the rate of
the process considered. The results say in effect that the jumps of a Poisson
process are as randomly distributed as possible.
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Theorem 2.11. Let (Nt)t⩾0 be a Poisson process. Then, conditional on the
event {Xt = n} , the jump times J1, . . . , Jn have joint density function

f (t1, . . . , tn) =
n!

tn
1{0<t1<···<tn<t} (2.8)

Thus, conditional on {Nt = n} , the jump times J1, . . . , Jn have the same
distribution as an ordered sample of size n from the uniform(0, t).

Proof. To compute the joint density, we need to find some f such that for
all A ∈ Bn,

P ((J1, . . . , Jn) ∈ A | Nt = n) =

∫
A
f (t1, . . . , tn) dt1 . . . dtn .

First, we compute the joint density for (J1, · · · , Jn). Since the holding times
S1, . . . , Sn+1 have joint density function

λn+1e−λ(s1+...+sn+1) 1{s1,...,sn+1>0} ,

so the jump times J1, . . . , Jn+1 have joint density function

λn+1e−λtn+1 1{0<t1<...<tn+1} ,

hence
P ((J1, . . . , Jn) ∈ A | Xt = n)

=
P ((J1, . . . , Jn) ∈ A and Jn ⩽ t < Jn+1)

P(Xt = n)

=
λn exp{−λt}

(λt)n/n! exp{−λt}

∫
A
1{0<t1<...<tn<t}dt1 . . . dtn

=

∫
A

n!

tn
1{0<t1<···<tn<t} dt1 . . . dtn

as required.

Corollary 2.12. If s < t and 0 ⩽ m ⩽ n, then

P(N(s) = m | N(t) = n) =

(
n

m

)(s
t

)m (
1− s

t

)n−m
(2.9)

Or, conditional on N(t) = n, the distribution of N(s) is binomial(n, s/t).
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2.3 Birth processes

A birth process is a generalization of a Poisson process in which the
parameter λ is allowed to depend on the current state of the process. The
data for a birth process consist of birth rates qj ⩾ 0 where j ∈ N.

We begin with a definition in terms of jump chain and holding times.
A minimal right-continuous process (Xt)t⩾0 with values in {0, 1, 2, · · · } ∪
{∞} is a birth process of rates (qj)j⩾0 if, conditional on X0 = i, its
holding times S1, S2, · · · are independent exponential random variables of
parameters qi, qi+1, · · · , respectively, and its jump chain is given by Yn =

i+ n.

The flow diagram and the Q-matrix is given by82 2. Continuous-time Markov chains I

0 1 2 3 4

q0 q1 q2 q3

The flow diagram is shown above and the Q-matrix is given by:

Q =



−q0 q0
−q1 q1

−q2 q2
. . . . . .


.

Example 2.5.1 (Simple birth process)

Consider a population in which each individual gives birth after an expo-
nential time of parameter λ, all independently. If i individuals are present
then the first birth will occur after an exponential time of parameter iλ.
Then we have i + 1 individuals and, by the memoryless property, the pro-
cess begins afresh. Thus the size of the population performs a birth process
with rates qi = iλ. Let Xt denote the number of individuals at time t and
suppose X0 = 1. Write T for the time of the first birth. Then

E(Xt) = E(Xt1T≤t) + E(Xt1T>t)

=
∫ t

0

λe−λs
E(Xt | T = s)ds+ e−λt.

Put µ(t) = E(Xt), then E(Xt | T = s) = 2µ(t− s), so

µ(t) =
∫ t

0

2λe−λsµ(t− s)ds+ e−λt

and setting r = t− s

eλtµ(t) = 2λ
∫ t

0

eλrµ(r)dr+ 1.

By differentiating we obtain

µ′(t) = λµ(t)

so the mean population size grows exponentially:

E(Xt) = eλt.

and

Q =



−q0 q0

−q1 q1

−q2 q2
. . . . . .


Much of the theory associated with the Poisson process goes through

for birth processes with little change, except that some calculations can no
longer be made so explicitly.

Explosion of brith process The most interesting new phenomenon present
in birth processes is the possibility of explosion. For certain choices of birth
rates, a typical path will make infinitely many jumps in a finite time, as
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shown in the following diagram. The convention of setting the process to
equal ∞ after explosion is particularly appropriate for birth processes!

2.5 Birth processes 83

Much of the theory associated with the Poisson process goes through
for birth processes with little change, except that some calculations can no
longer be made so explicitly. The most interesting new phenomenon present
in birth processes is the possibility of explosion. For certain choices of birth
rates, a typical path will make infinitely many jumps in a finite time, as
shown in the diagram. The convention of setting the process to equal ∞
after explosion is particularly appropriate for birth processes!

t
0

1

2

3

4

5

6

7

8

Xt

S1 S2 S3 S4

J0 = 0 J1 J2 J3 J4 ζ

In fact, Theorem 2.3.2 tells us exactly when explosion will occur.

Theorem 2.5.2. Let (Xt)t≥0 be a birth process of rates (qj : j ≥ 0),
starting from 0.

(i) If
∞∑

j=0

1
qj
<∞, then P(ζ <∞) = 1.

(ii) If
∞∑

j=0

1
qj

= ∞, then P(ζ = ∞) = 1.

Proof. Apply Theorem 2.3.2 to the sequence of holding times S1, S2, . . . .

The proof of the Markov property for the Poisson process is easily
adapted to give the following generalization.

In fact, Theorem 2.13 tells us exactly when explosion will occur.

Theorem 2.13. Let (Xt)t⩾0 be a birth process of rates (qj : j ⩾ 0) starting
from 0.

(i) If
∑∞

j=0
1
qj

< ∞, then P(ζ < ∞) = 1.

(ii) If
∑∞

j=0
1
qj

= ∞, then P(ζ = ∞) = 1.

Proof. Using Proposition 2.26.

The proof of the Markov property for the Poisson process is easily adapted
to give the following generalization.

85



Theorem 2.14 (Markov property). Let (Xt)t⩾0 be a birth process of
rates (qj : j ⩾ 0) . Then, conditional on Xs = i, (Xs+t)t⩾0 is a birth process
of rates (qj : j ⩾ 0) starting from i and independent of (Xs : s ⩽ s)

Proof. Let X̃t = Xt+s for each t ⩾ 0. Then (X̃t)t⩾0 is a right-continuous
process valued in {0, 1, 2, · · · } ∪ {∞}. Denote (J̃n)n⩾0 the jump times of
(X̃t)t⩾0 and

N(t) :=

∞∑
n=1

1{Jn⩽t} , for all t ⩾ 0 .

Then J̃0 = 0 and
J̃n = JN(s)+n − s , for n ⩾ 2 .

The holding times of (X̃t)t⩾0 is given by

S̃1 = JN(s)+1 − s ; S̃n = SN(s)+n , for n ⩾ 2 .

Hence, on {N(s) = k} = {Jk ⩽ s < Jk+1},

S̃1 = Jk+1 − s ; S̃n = Sk+n , for n ⩾ 2 ,

and

Xt = i− k +
k∑

n=1

1{Jn⩽t} , for t ⩽ s .

We show now that (X̃t)t⩾0 is a birth process of rates (qj : j ⩾ 0) and

σ(Xt : t ⩽ s) is independent of σ(X̃t : t ⩾ 0) = σ(S̃n : n ⩾ 1) ,

First of all, it’s easy to show that for each A ∈ σ(Xt : t ⩽ s),

P({S̃1 > t1, · · · , S̃n > tn} ∩A ∩ {N(s) = k,Xs = i})

=e−qit1 · · · e−qi+n−1tnP(∩A ∩ {N(s) = k,Xs = i})

Then sum over k = 0, 1, 2, · · · , and divide P(Xs = i), we get

P({S̃1 > t1, · · · , S̃n > tn} ∩A | {Xs = i})

= e−qit · · · e−qi+n−1t P(A | {Xs = i})

= Pi(S1 > t1, · · · , Sn > tn) P(A | Xs = i) .

We have completed the proof.
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We shall shortly prove a theorem on birth processes which generalizes
the key theorem on Poisson processes. First we must see what will replace
the Poisson probabilities. In Theorem 2.6 these arose as the unique solution
of a system of differential equations, which we showed were essentially the
forward equations. Now we can still write down the forward equation

P ′(t) = P (t)Q, P (0) = I

or, in components

p′i0(t) = −pi0(t)q0, pi0(0) = δi0

and, for j = 1, 2, · · ·

p′ij(t) = pi,j−1(t)qj−1 − pij(t)qj , pij(0) = δij

Moreover, these equations still have a unique solution; it is just not as
explicit as before. For we must have

pi0(t) = δi0e
−q0t

which can be substituted in the equation

p′i1(t) = pi0(t)q0 − pi1(t)q1, pi1(0) = δi1

and this equation solved to give

pi1(t) = δi1e
−q1t + δi0

∫ t

0
q0e

−q0se−q1(t−s)ds

Now we can substitute for pi1(t) in the next equation up the hierarchy and
find an explicit expression for pi2(t), and so on.

Theorem 2.15. Let (Xt)t⩾0 be an increasing, right-continuous process with
values in {0, 1, 2, · · · }∪{∞}. Let 0 ⩽ qj < ∞ for all j ⩾ 0. Then the following
three conditions are equivalent:
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(i) (jump chain/holding time definition) conditional on X0 = i, the hold-
ing times S1, S2, · · · are independent exponential random variables of
parameters qi, qi+1, · · · respectively and the jump chain is given by
Yn = i+ n for all n.

(ii) (infinitesimal definition) for all t, h ⩾ 0, conditional on Xt = i, Xt+h

is independent of {Xs : s ⩽ t} and, as h ↓ 0, uniformly in t

P (Xt+h = i | Xt = i) = 1− qih+ o(h) ,

P (Xt+h = i+ 1 | Xt = i) = qih+ o(h) .

(iii) (transition probability definition) for all n = 1, 2, · · · , all times 0 ≤
t0 ⩽ · · · ⩽ tn+1 and all states i0, · · · , in−1, i, j

P
(
Xtn+1 = j | Xtn = i,Xt0 = i0, · · · , Xtn−1 = in−1

)
= pij (tn+1 − tn)

where (pij(t))i,j∈N is the unique solution of the forward equations.

If (Xt)t⩾0 satisfies any of these conditions, then it is called a birth process
of rates (qj : j ⩾ 0).

Proof. (i) ⇒ (ii). If (i) holds, then, by the Markov property for any t, h ⩾ 0

conditional on Xt = i,Xt+h is independent of (Xs : s ⩽ t) and, as h ↓ 0

uniformly in t

P (Xt+h ⩾ i+ 1 | Xt = i) = P (Xh ⩾ i+ 1 | X0 = i)

= P (J1 ⩽ h | X0 = i) = 1− e−qih = qih+ o(h)

and

P (Xt+h ⩾ i+ 2 | Xt = i) = P (Xh ⩾ i+ 2 | X0 = i)

= P (J2 ⩽ h | X0 = i) ⩽ P (S1 ⩽ h and S2 ⩽ h | X0 = i)

=
(
1− e−qih

)(
1− e−qi+1h

)
= o(h)

which implies (ii).
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(ii) ⇒ (iii). If (ii) holds, then certainly for k = i+ 2, i+ 3, · · ·

P (Xt+h = k | Xt = i) = o(h) as h ↓ 0, uniformly in t

Set pij(t) = P (Xt = j | X0 = i) . Then, for j = 1, 2, · · ·

pij(t+ h) = P (Xt+h = j | X0 = i)

=

j∑
k=i

P (Xt = k | X0 = i)P (Xt+h = j | Xt = k)

= pij(t) (1− qjh+ o(h)) + pi,j−1(t) (qj−1h+ o(h)) + o(h)

pij(t+ h)− pij(t)

h
= pi,j−1(t)qj−1 − pij(t)qj +O(h)

As in the proof of Theorem 2.6 we can deduce that pij(t) is differentiable
and satisfies the differential equation

p′ij(t) = pi,j−1(t)qj−1 − pij(t)qj

By a simpler argument we also find

p′i0(t) = −pi0(t)q0

Thus (pij(t) : i, j = 0, 1, 2, · · · ) must be the unique solution to the forward
equations. If (Xt)t⩾0 satisfies (ii) then certainly

P
(
Xtn+1 = in+1 | X0 = i0, · · · , Xtn = in

)
= P

(
Xtn+1 = in+1 | Xtn = in

)
(iii) ⇒ (i). See the proof of Theorem 2.6.

¶ Example 2.2 (Yule process). Consider a population in which each in-
dividual gives birth after an exponential time of parameter λ, all indepen-
dently. If i individuals are present then the first birth will occur after an
exponential time of parameter iλ Then we have i + 1 individuals and, by
the memoryless property, the process begins afresh. Thus the size of the
population performs a birth process with rates qi = iλ. Let Xt denote the
number of individuals at time t and suppose X0 = 1. Write J = J1 for the
time of the first birth.
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(i) Note that
EXt = EXt1{J⩽t} + EXt1{J>t}

=

∫ t

0
λe−λsE [Xt | J = s]ds+ e−λt

Put µ(t) = EXt, then E [Xt | J = s] = 2µ(t− s), so

µ(t) =

∫ t

0
2λe−λsµ(t− s)ds+ e−λt

and setting r = t− s

eλtµ(t) = 2λ

∫ t

0
eλrµ(r)dr + 1

By differentiating we obtain µ′(t) = λµ(t), so the mean population
size grows exponentially:

EXt = eλt .

(ii) Let ϕ(t, z) = E zXt for all t ⩾ 0 and |z| < 1, then

E zXt = E zXt1{J⩽t} + E zXt1{J>t}

=

∫ t

0
λe−λs E

[
zXt | J = s

]
ds+ e−λt

Note that E
[
zXt | J = s

]
= ϕ(t− s, z)2, hence

ϕ(t, z) = ze−λt +

∫ t

0
λe−λsϕ(t− s, z)2ds

Make a change of variables u = t− s in the integral and deduce that
∂ϕ

∂t
= λϕ(ϕ− 1) ,

so
ϕ(t, z) =

ze−λt

1− z[1− e−λt]
.

We can deduce that, for n = 1, 2, · · ·

P (Xt = n) = e−λt [1− e−λt]n−1 .
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2.4 Jump chain and holding times

This section begins the theory of continuous-time Markov chains proper,
which will occupy the remainder of this chapter and the whole of the next.
The approach we have chosen is to introduce continuous-time chains in terms
of the joint distribution of their jump chain and holding times. This provides
the most direct mathematical description. It also makes possible a number
of constructive realizations of a given Markov chain, which we shall describe,
and which underlie many applications.

Let I be a countable set. The basic data for a continuous-time Markov
chain on I are given in the form of a Q-matrix. Recall that a Q-matrix on
I is any matrix Q = (qij)i,j∈I which satisfies the following conditions:

(i) qij ⩾ 0 for all i 6= j,

(ii) −qii =
∑

j ̸=i qij < ∞ for all i.

We will sometimes find it convenient to write qi as an alternative notation
for −qii.

We are going to describe a simple procedure for obtaining from a Q

matrix Q a stochastic matrix Π. The jump matrix Π = (πij)i,j∈I of Q is
defined by

πij =


qij
qi

if j 6= i and qi 6= 0

0 if j 6= i and qi = 0
πii =

{
0 if qi 6= 0

1 if qi = 0
(2.10)

This procedure is best thought of row by row. For each i ∈ I we take,
where possible, the off-diagonal entries in the i th row of Q and scale them
so they add up to 1 , putting a 0 on the diagonal. This is only impossible
when the off-diagonal entries are all 0, then we leave them alone and put a
1 on the diagonal.

Here is the definition of a continuous-time Markov chain in terms of its
jump chain and holding times.
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Definition 2.3. A minimal right-continuous process (Xt)t⩾0 on I is called a
continuous-time Markov chain with initial distribution λ and generator
matrix Q, if its jump chain (Yn)n⩾0 is discrete-time Markov(λ,Π) and for
each n ⩾ 1, conditional on Y0, · · · , Yn−1, its holding times S1, · · · , Sn are in-
dependent exponential random variables of parameters q (Y0) , · · · , q (Yn−1)

respectively. We say (Xt)t⩾0 is Markov(λ,Q) for short.

Remark. That is, given a set of the form

B = {Y0 = i0, · · · , Yn = in, S1 > s1, · · · , Sn > sn}

Our jump chain/holding time definition of the continuous-time chain (Xt)t⩾0

is saying that for such events

P(B) = λi0πi0i1 · · ·πin−1ine
−qi0s1 · · · e−qin−1

sn (2.11)

Then, this definition uniquely determines a probability measure P on

σ
(
(Yn)n⩾0 , (Sn)n⩾1

)
= σ

(
(Xt)t⩾0

)
Moreover, one can show that conditional on {Yn−1 = i}, Sn is independnt
of (Yn)n⩾0 from (2.11).

Strong Markov property As for Poisson processes and birth processes,
we shall deduce the Markov property from the jump chain/holding time
definition. In fact, we shall give the strong Markov property as this is a
fundamental result and the proof is not much harder. However, the proof
of both results really requires the precision of measure theory, so we have
omitted it, one can find a proof on Markov Chians written by J.R.Norris.

Theorem (Strong Markov property). Let (Xt)t⩾0 be Markov(λ,Q) and
let T be a stopping time of (Xt)t⩾0 . Then, conditional on T < ζ and XT = i,

(XT+t)t⩾0

is Markov(δi, Q) and independent of (Xt)t⩽T .
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2.4.1 Construct a Markov chain

First construction We can construct such a process as follows: let (Yn)n⩾0

be discrete-time Markov(λ,Π) and let T1, T2, · · · be independent exponential
random variables of parameter 1, independent of (Yn)n⩾0 . Set

Sn =
Tn

q (Yn−1)
, Jn = S1 + · · ·+ Sn, for n ⩾ 1 . (2.12)

and define

Xt =

{
Yn if Jn ⩽ t < Jn+1 for some n

∂ otherwise
, for t ⩾ 0 . (2.13)

Then (Xt)t⩾0 has the required properties, that is one can check that, (Xt)t⩾0

is minimal right-continuous process, its jump times is exactly (Jn)n⩾0 and
its jump chian is exactly (Yn)n⩾1, and (2.11) holds.

We shall now describe two further constructions. You will need to un-
derstand these constructions in order to identify processes in applications
which can be modelled as Markov chains. Both constructions make direct
use of the entries in the Q-matrix, rather than proceeding first via the jump
matrix.

Second construction We begin with an initial state X0 = Y0 with distri-
bution λ, and with an array

{
T j
n : n ⩾ 1, j ∈ I

}
of independent exponential

random variables of parameter 1. Then, inductively for n ∈ N, on {Yn = i},
we set

Sj
n+1 =

T j
n+1

qij
, for j 6= i , Sn+1 = inf

j ̸=i
Sj
n+1 (2.14)

and

Yn+1 =

{
j if Sj

n+1 = Sn+1 < ∞
i if Sn+1 = ∞

(2.15)

Then, conditional on Yn = i, the random variables Sj
n+1 are independent

exponentials of parameter qij for all j 6= i. So, conditional on Yn = i, Sn+1
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is exponential of parameter qi =
∑

j ̸=i qij , Yn+1 has distribution (πij)j∈I ,

and Sn+1 and Yn+1 are independent, and independent of Y0, · · · , Yn and
S1, · · · , Sn, as required. This construction shows why we call qi the rate of
leaving i and qij the rate of going from i to j.

Our third and final construction of a Markov chain with generator matrix
Q and initial distribution λ is based on the Poisson process.

Third construction Imagine the state-space I as a labyrinth(迷宫) of
chambers and passages, each passage shut off by a single door which opens
briefly from time to time to allow you through in one direction only. Suppose
the door giving access to chamber j from chamber i opens at the jump times
of a Poisson process of rate qij and you take every chance to move that you
can, then you will perform a Markov chain with Q-matrix Q.

In more mathematical terms, we begin with an initial state X0 = Y0

with distribution λ, and with a family of independent Poisson processes{(
N ij

t

)
t⩾0

: i, j ∈ I, i 6= j

}
(
N ij

t

)
having rate qij . Then set J0 = 0 and define inductively for n ∈ N,

Jn+1 = inf
{
t > Jn : NYnj

t 6= NYnj
Jn

for some j 6= Yn

}
,

Yn+1 =

{
j if Jn+1 < ∞ and NYnj

Jn+1
6= NYnj

Jn

i if Jn+1 = ∞
.

The first jump time of
(
N ij

t

)
is exponential of parameter qij . So by

Proposition 2.27, conditional on Y0 = i, J1 is exponential of parameter qi =∑
j ̸=i qij , and Y1 has distribution (πij : j ∈ I) , and J1 and Y1 are indepen-

dent.
Now suppose T is a stopping time of (Xt)t⩾0 . If we condition on X0

and on the processes
(
Nkl

t

)
t⩾0

for (k, l) 6= (i, j), which are independent of
N ij

t then {T ⩽ t} depends only on
{
N ij

s : s ⩽ t
}
. So, by the strong Markov
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property of the Poisson process Ñ ij
t := N ij

T+t − N ij
T is a Poisson process of

rate qij independent of
{
N ij

s : s ⩽ T
}
, and independent of X0 and

(
Nkl

t

)
t⩾0

for (k, l) 6= (i, j). Hence, conditional on T < ∞ and XT = i, (XT+t)t⩾0 has
the same distribution as (Xt)t⩾0 and is independent of {Xs : s ⩽ T}.

In particular, we can take T = Jn to see that, conditional on Jn < ∞ and
Yn = i, Sn+1 is exponential of parameter qi, Yn+1 has distribution (πij)j∈I ,

and Sn+1 and Yn+1 are independent, and independent of Y0, · · · , Yn and
S1, · · · , Sn. Hence (Xt)t⩾0 is Markov (λ,Q) and, moreover, (Xt)t⩾0 has the
strong Markov property.

The conditioning on which this argument relies requires some further
justification, especially when the state-space is infinite, so we shall not rely
on this third construction in the development of the theory.

EXERCISE

¶ Exercise 2.3. (Xt)t⩾0 is Markov(λ,Q), let (Yn)n⩾0 be the jump chain and
(Sn)n⩾0 the holding times. Then there exists T1, T2, · · · that are indepen-
dent exponential random variables of parameter 1, independent of (Yn)n⩾0,
satisfying

Sn =
Tn

q (Yn−1)
for n ⩾ 1 .

2.4.2 Explosion

We saw in the special case of birth processes that, although each holding
time is strictly positive, one can run through a sequence of states with shorter
and shorter holding times and end end up taking infinitely many jumps in a
finite time. This phenomenon is called explosion. Recall that for a process
with jump times J0, J1, J2, · · · and holding times S1, S2, · · · , the explosion
time ζ is given by

ζ = sup
n

Jn =

∞∑
n=1

Sn
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We say that a Q -matrix Q is explosive if, for the associated Markov chain

Pi(ζ < ∞) > 0 for some i ∈ I (2.16)

Otherwise Q is non-explosive. It is a simple consequence of the Markov
property for (Yn)n⩾0 that under Pi the process (Xt)t⩾0 is Markov (δi, Q) .

The next result gives simple conditions for nonexplosion and covers many
cases of interest.

Theorem 2.16. Let (Xt)t⩾0 be Markov(λ,Q). Then (Xt)t⩾0 does not ex-
plode if any one of the following conditions holds:

(i) supi∈I qi < ∞, particulatly, I is finite.

(ii) X0 = i, and i is recurrent for the jump chain.

Proof. By Exercise 2.3, there exists T1, T2, · · · are independent exponential(1)
and independent of (Yn)n⩾0 . In cases (i), let q = supi qi < ∞ then

qζ ⩾
∞∑
n=1

Tn = ∞

In case (ii), since i is recurrent for (Yn)n⩾0, so (Yn)n⩾0 visits i infinitely
often, at times N1, N2, · · · , say. Then

ζ ⩾
∞∑
k=1

SNk+1 ,

it suffices to show that (SNk+1)k⩾1 is i.i.d. r.v.’s sequence with distribution
expoential(qi). For any t1, · · · , tk > 0,

P
(
SN1+1 > t1, · · · , SNk+1 > tk

)
=

∑
n1,··· ,nk

P
(
Sn1+1 > t1, · · · , Snk+1 > tk ;N1 = n1, · · · , Nk = nk

)
=

∑
n1,··· ,nk

P
(
N1 = n1, · · · , Nk = nk

)
e−qi(t1+···tk) = e−qi(t1+···tk) ,

as required.
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2.5 Forward and backward equations

Although the definition of a continuous-time Markov chain in terms of
its jump chain and holding times provides a clear picture of the process,
it does not answer some basic questions. For example, we might wish to
calculate

pij(t) := Pi (Xt = j) .

In this section we shall obtain two more ways of characterizing a continuous-
time Markov chain, which will in particular give us a means to find pij(t).
Let

P (t) := (pij(t))i,j∈I

Then P (t) is a substochastic matrix (if Q non-explosive, P (t) is stochastic),
and {P (t)} is called transition matrix.

Proposition 2.17 (C-K equation). For transition matrix {P (t)}, we have
P (0) = I, and for each t, s ⩾ 0,

P (t+ s) = P (t)P (s) . (2.17)

Proof. For any i, j ∈ I,

pij(t+ s) = Pi (Xt+s = j) =
∑
k∈I

Pi (Xt = k,Xt+s = j)

=
∑
k∈I

Pi (Xt = k)Pi (Xt+s = j | Xt = k)

=
∑
k∈I

Pi (Xt = k)Pk (Xs = j) =
∑
k∈I

pik(t)pkj(s) ,

and we have used Markov property.

Lemma 2.18. (Xt)t⩾0 is Markov(λ,Q), let (Jn)n⩾1 be the jump times.
Then, as t → 0,

(i) Pi

(
t < J1

)
= 1− qit+ o(t).
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(ii) Pi

(
J1 ⩽ t < J2

)
= qit+ o(t).

(iii) Pi

(
t ⩾ J2

)
= o(t).

Proof. (i) is trival, since Pi

(
t < J1

)
= e−qit = 1− qit+ o(t).

To show (ii), note that for j 6= i,

Pi

(
J1 ⩽ t < J2, Y1 = j

)
=

∫ t

0
qie−qisπije−qj(t−s) ds

= qije−qit

∫ t

0
e(qj−qi)s ds = qijt+ o(t) ,

since
∑

j ̸=i qij < ∞, we get

Pi

(
J1 ⩽ t < J2

)
=
∑
j ̸=i

Pi

(
J1 ⩽ t < J2, Y1 = j

)
= qit+ o(t) .

Obviously, (i) and (ii) imply (iii).

Proposition 2.19. {P (t)} satisfies

(i) P (t) is uniformly continuous. Indeed , for given i, j ∈ I

|pij(t+ h)− pij(t)| ⩽ 1− e−qih for all t, h ⩾ 0, .

(ii) P ′(0) = Q. In other words

lim
t↓0

pij(t)− δij
t

= qij for all i, j .

Proof. To show (i), note that

|pij(t+ h)− pij(t)| =

∣∣∣∣∣∑
k∈I

pik(h)pkj(t)− pij(t)

∣∣∣∣∣
=

∣∣∣∣∣∣
∑
k ̸=i

pik(h)pkj(t)− (1− pii(h)) pij(t)

∣∣∣∣∣∣
⩽ 1− pii(h) ⩽ Pi (J1 ⩽ h) = 1− e−qih .
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To show (ii), note that for i 6= j

pij(t) = Pi(Xt = j, J1 ⩽ t < J2) + Pi(Xt = j, J2 ⩽ t) ,

we have shown the first term is qijt+o(t) and the second is o(t) in the proof
of Lemma 2.18, so

lim
t↓0

pij(t)

t
= qij

For j = i,

1− pii(t) = Pi (Xt 6= i) = Pi(J1 ⩽ t < J2) + o(t) = qit+ o(t) ,

as required.

We come to the key result for continuous-time Markov chains. We shall
present first a version for the case of finite state-space, where there is a
simpler proof. In this case there are three alternative definitions, just as for
the Poisson process.

Proposition 2.20. Let (Xt)t⩾0 be a right-continuous process with values
in a finite set I. Let Q be a Q-matrix on I with jump matrix Π. Then the
following three conditions are equivalent:

(i) (jump chain/holding time definition) conditional on X0 = i, the jump
chain (Yn)n⩾0 of (Xt)t⩾0 is discrete-time Markov(δi,Π) and for each
n ⩾ 1, conditional on Y0, · · · , Yn−1, the holding times S1, · · · , Sn are
independent exponential r.v.’s of parameters q (Y0) , · · · , q (Yn−1) re-
spectively .

(ii) (infinitesimal definition) for all t, h ⩾ 0, conditional on Xt = i, Xt+h

is independent of {Xs : s ⩽ t} and, as h → 0, uniformly in t,

P (Xt+h = j | Xt = i) = δij + qijh+ o(h) , for all j .
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(iii) (transition probability definition) for all n ⩾ 1, all times 0 ⩽ t0 < t1 <

· · · < tn+1 and all states i0, · · · , in−1, i, j ∈ I

P
(
Xtn+1 = j | Xtn = i, Xt0 = i0, · · · , Xtn−1 = in−1

)
= pij (tn+1 − tn)

where (pij(t) : i, j ∈ I, t ⩾ 0) is the (unique) solution of the forward
equation

P ′(t) = P (t)Q, P (0) = I .

or the backward equation

P ′(t) = QP (t), P (0) = I .

If (Xt)t⩾0 satisfies any of these conditions then it is called a Markov chain
with generator matrix Q.

Proof. (i) ⇒ (ii). Suppose (i) holds, then, as h → 0,

Pi (Xh = i) = Pi (Xh = i, J1 > h) + Pi(Xh = i, J2 ⩽ h)

= e−qih + o(h) = 1 + qiih+ o(h) ,

where we used Pi(Xh = i, J2 ⩽ h) ⩽ Pi(J2 ⩽ h) = o(h). And for j 6= i we
have

Pi (Xh = j) = Pi (Xh = j, J1 ⩽ h < J2) + Pi (Xh = j, J2 ⩽ h)

= qij

∫ h

0
e−qise−qj(h−s) ds+ o(h) = qijh+ o(h) .

Thus for every state j,

Pi (Xh = j) = δij + qijh+ o(h) .

Then by the Markov property, for any t, h ⩾ 0, conditional on Xt = i, Xt+h

is independent of {Xs : s ⩽ t} and, as h → 0, uniformly in t

P (Xt+h = j | Xt = i) = Pi (Xh = j) = δij + qijh+ o(h) .
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(ii) ⇒ (iii). Set pij(t) = Pi (Xt = j). If (ii) holds, then for all t, h ⩾ 0, as
h → 0, uniformly in t,

pij(t+ h) =
∑
k∈I

Pi (Xt = k)P (Xt+h = j | Xt = k)

=
∑
k∈I

pik(t) (δkj + qkjh+ o(h)) ,
(2.18)

since I is finite we have
pij(t+ h)− pij(t)

h
=
∑
k∈I

pik(t)qkj + o(1) .

So, letting h ↓ 0, we see that pij(t) is differentiable on the right. Then by
uniformity we can replace t by t − h in the above and let h ↓ 0 to see first
that pij(t) is continuous on the left, then differentiable on the left, hence
differentiable, and satisfies the forward equations

p′ij(t) =
∑
k∈I

pik(t)qkj , pij(0) = δij

since I is finite, pij(t) is then the unique solution by Proposition 2.30. Also,
if (ii) holds, then

P
(
Xtn+1 = j | Xtn = i,Xt0 = i0, · · · , Xtn−1 = in−1

)
= P

(
Xtn+1 = j | Xtn = i

)
and, moreover, (ii) holds for (Xtn+t)t⩾0 so, by the above argument,

P
(
Xtn+1 = j | Xtn = i

)
= pij (tn+1 − tn)

proving (iii).

(iii) ⇒ (i). See the proof of Theorem 2.6.

Remark. It should emphsized that we have supposed that I is a finite set
in Proposition 2.20, how about I is infinite ?

In the proof above, we can see that (i) ⇒ (ii) still holds, but (ii) ⇒ (iii)
becomes problematic : in (2.18), when I is infinite, we can not guarantee
that

∑
k∈I pik(t)rkj(h) is o(h), where rkj(h) := pkj(h)− δkj − qkjh = o(h).
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We turn now to the case of infinite state-space. The backward equation
may still be written in the form

P ′(t) = QP (t), P (0) = I

only now we have an infinite system of differential equations

p′ij(t) =
∑
k∈I

qikpkj(t), pij(0) = δij

A solution to the backward equation is any matrix (pij(t) : i, j ∈ I) of dif-
ferentiable functions satisfying this system of differential equations.

Theorem 2.21. Let Q be a Q-matrix. Then the backward equation

P ′(t) = QP (t), P (0) = I

has a minimal non-negative solution {P (t)}. This solution forms a matrix
semigroup

P (s)P (t) = P (s+ t) for all s, t ⩾ 0 .

We shall prove this result by a probabilistic method in combination with
Theorem 2.22. Note that if I is finite we must have P (t) = etQ by Propo-
sition 2.30. We call {P (t) : t ⩾ 0} the minimal non-negative semigroup
associated to Q, or simply the semigroup of Q, the qualifications minimal
and non- negative being understood.

Here is the key result for Markov chains with infinite state-space. There
are just two alternative definitions now as the infinitesimal characterization
becomes problematic for infinite state-space.

Theorem 2.22. Let (Xt)t⩾0 be a minimal right-continuous process with
values in I. Let Q be a Q-matrix on I with jump matrix Π and semigroup
{P (t)}. Then the following conditions are equivalent:

(i) (jump chain/holding time definition) conditional on X0 = i, the jump
chain (Yn)n⩾0 of (Xt)t⩾0 is discretetime Markov(δi,Π) and for each n ⩾
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1, conditional on Y0, · · · , Yn−1, the holding times S1, · · · , Sn are inde-
pendent exponential random variables of parameters q (Y0) , · · · , q (Yn−1)

respectively .

(ii) (transition probability definition) for all n ⩾ 1, all times 0 ⩽ t0 < t1 <

· · · < tn+1 and, all states i0, · · · , in−1, i, j

P
(
Xtn+1 = j | Xtn = i,Xt0 = i0, · · · , Xtn−1 = in−1

)
= pij (tn+1 − tn) .

If (Xt)t ⩾ 0 satisfies any of these conditions then it is called a Markov chain
with generator matrix Q .

Proof of Theorem 2.21 and 2.22 . We know that there exists a process (Xt)t⩾0

satisfying (i). So let us define P (t) = (pij(t)) by

pij(t) = Pi (Xt = j) .

Step 1. We show that {P (t)} satisfies the backward equation.

Conditional on X0 = i we have J1 ∼ Exp (qi) and XJ1 ∼ (πik)k∈I . Then
conditional on J1 = s and XJ1 = k we have (Xs+t)t⩾0 ∼ Markov (δk, Q) .

So
Pi (Xt = j, t < J1) = e−qitδij

and
Pi (J1 ⩽ t,XJ1 = k,Xt = j) =

∫ t

0
qie

−qisπikpkj(t− s)ds

Therefore

pij(t) = Pi (Xt = j, t < J1) +
∑
k ̸=i

Pi (J1 ⩽ t,XJ1 = k,Xt = j)

= e−qitδij +
∑
k ̸=i

∫ t

0
qie

−qisπikpkj(t− s)ds (2.19)

Make a change of variable u = t−s in each of the integrals, interchange sum
and integral by monotone convergence and multiply by eqit to obtain

eqitpij(t) = δij +

∫ t

0

∑
k ̸=i

qie
qiuπikpkj(u)du (2.20)
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This equation shows, firstly, that pij(t) is continuous in t for all i, j. Sec-
ondly, the integrand is then a uniformly converging sum of continuous func-
tions, hence continuous, and hence pij(t) is differentiable in t and satisfies

eqit
(
qipij(t) + p′ij(t)

)
=
∑
k ̸=i

qie
qitπikpkj(t)

Recall that qi = −qii and qik = qiπik for k 6= i. Then, on rearranging, we
obtain

p′ij(t) =
∑
k∈I

qikpkj(t) . (2.21)

So P (t) satisfies the backward equation. The integral equation (2.19) is
called the integral form of the backward equation.

Step 2. We show that if P̃ (t) is another non-negative solution of the
backward equation, then P (t) ⩽ P̃ (t), hence P (t) is the minimal non-
negative solution. The argument used to prove (2.19) also shows that

Pi (Xt = j, t < Jn+1)

= e−qitδij +
∑
k ̸=i

∫ t

0
qie

−qisπikPk (Xt−s = j, t− s < Jn)ds .
(2.22)

On the other hand, if P̃ (t) satisfies the backward equation, then, by reversing
the steps from (2.19) to 2.21, it also satisfies the integral form:

p̃ij(t) = e−qitδij +
∑
k ̸=i

∫ t

0
qie

−qisπikp̃kj(t− s)ds . (2.23)

If P̃ (t) ⩾ 0, then

Pi (Xt = j, t < J0) = 0 ⩽ p̃ij(t) for all i, j and t .

Let us suppose inductively that

Pi (Xt = j, t < Jn) ⩽ p̃ij(t) for all i, j and t ,

then by comparing (2.22) and (2.23) we have

Pi (Xt = j, t < Jn+1) ⩽ p̃ij(t) for all i, j and t ,
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and the induction proceeds. Hence

pij(t) = lim
n→∞

Pi (Xt = j, t < Jn) ⩽ p̃ij(t) for all i, j and t .

Step 3. Since (Xt)t⩾0 does not return from ∞ we have

pij(s+ t) = Pi (Xs+t = j) =
∑
k∈I

Pi (Xs+t = j|Xs = k)Pi (Xs = k)

=
∑
k∈I

Pi (Xs = k)Pk (Xt = j) =
∑
k∈I

pik(s)pkj(t)

by the Markov property. Hence {P (t) : t ⩾ 0} is a matrix semigroup. This
completes the proof of Theorem 2.21.

Step 4. Suppose, as we have throughout, that (Xt)t⩾0 satisfies (i).
Then, by the Markov property

P
(
Xtn+1 = j | Xtn = i,Xt0 = i0, · · · , Xtn−1 = in−1

)
= Pi

(
Xtn+1−tn = j

)
= pij (tn+1 − tn)

so (Xt)t⩾0 satisfies (ii). We complete the proof of Theorem 2.22 by the usual
argument that (ii) must now imply (i) : if (ii) holds, the finite-dimensional
distributions of (Xt)t⩾0 is uniquely determined, and hence the distribution
of jump chain and holding times.

So far we have said nothing about the forward equation in the case of in-
finite state-space. Remember that the finite state-space results (Proposition
2.30) are no longer valid. The forward equation may still be written

P ′(t) = P (t)Q, P (0) = I

now understood as an infinite system of differential equations

p′ij(t) =
∑
k∈I

pik(t)qkj , pij(0) = δij

A solution is then any matrix (pij(t))i,j∈I of differentiable functions satisfy-
ing this system of equations. We shall show that the semigroup {P (t)} of Q
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does satisfy the forward equations, by a probabilistic argument resembling
Step 1 of the Proof of Theorem 2.21 and 2.22.

This time, instead of conditioning on the first event, we condition on the
last event before time t. The argument is a little longer because there is no
reverse-time Markov property to give the conditional distribution. We need
the following time-reversal identity.

Lemma 2.23. We have

qinP (Jn ⩽ t < Jn+1 | Y0 = i0, Y1 = i1, · · · , Yn = in)

= qi0P (Jn ⩽ t < Jn+1 | Y0 = in, · · · , Yn−1 = i1, Yn = i0)

Proof. Conditional on Y0 = i0, · · · , Yn = in, the holding times S1, · · · , Sn+1

are independent with Sk ∼ Exp
(
qik−1

)
. So the left-hand side is given by∫

∆(t)
qin exp {−qin (t− s1 − · · · − sn)}

n∏
k=1

qik−1
exp

{
−qik−1

sk
}

dsk

where

∆(t) = {(s1, · · · , sn) : s1 + · · ·+ sn ⩽ t and s1, · · · , sn ⩾ 0} .

On making the substitutions u1 = t − s1 − · · · − sn and uk = sn−k+2, for
k = 2, · · · , n, we obtain

qinP (Jn ⩽ t < Jn+1 | Y0 = i0, · · · , Yn = in)

=

∫
∆(t)

qi0 exp {−qi0 (t− u1 − · · · − un)}
n∏

k=1

qin−k+1
exp

{
−qin−k+1

uk
}
duk

= qi0P (Jn ⩽ t < Jn+1 | Y0 = in, · · · , Yn−1 = i1, Yn = i0) .

Theorem 2.24. We have The minimal non-negative solution (P (t) : t ⩾ 0)

of the backward equation is also the minimal non-negative solution of the
forward equation

P ′(t) = P (t)Q, P (0) = I
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Proof. Let (Xt)t⩾0 denote the minimal Markov chain with generator matrix
Q. By Theorem 2.22

pij(t) = Pi (Xt = j)

=

∞∑
n=0

∑
k ̸=j

Pi (Jn ⩽ t < Jn+1, Yn−1 = k, Yn = j) .

Now by Lemma 2.23 for n ⩾ 1, we have

Pi (Jn ⩽ t < Jn+1 | Yn−1 = k, Yn = j)

=
qi
qj
Pj (Jn ⩽ t < Jn+1 | Y1 = k, Yn = i)

=
qi
qj

∫ t

0
qje

−qjsPk (Jn−1 ⩽ t− s < Jn | Yn−1 = i)ds

= qi

∫ t

0
e−qjs

qk
qi

Pi (Jn−1 ⩽ t− s < Jn | Yn−1 = k)ds

where we have used the Markov property of (Yn)n⩾0 for the second equality.
Hence

pij(t) = δije
−qit +

∞∑
n=1

∑
k ̸=j

∫ t

0
Pi (Jn−1 ⩽ t− s < Jn | Yn−1 = k)

× Pi (Yn−1 = k, Yn = j) qke
−qjs ds

= δije
−qit +

∞∑
n=1

∑
k ̸=j

∫ t

0
Pi (Jn−1 ⩽ t− s < Jn, Yn−1 = k) qkπkje

−qjs ds

= δije
−qit +

∫ t

0

∑
k ̸=j

pik(t− s)qkje
−qjs ds (2.24)

where we have used monotone convergence to interchange the sum and in-
tegral at the last step. This is the integral form of the forward equation.

Now make a change of variable u = t− s in the integral and multiply by
eqjt to obtain

pij(t)e
qjt = δij +

∫ t

0

∑
k ̸=j

pik(u)qkje
qjudu (2.25)
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We know by equation (2.20) that eqitpik(t) is increasing for all i, k. Hence
either

∑
k ̸=j pik(u)qkj converges uniformly for u ∈ [0, t] or∑

k ̸=j

pik(u)qkj = ∞ for all u ⩾ t

The latter would contradict (2.25) since the left-hands ide is finite for all t
so it is the former which holds. We know from the backward equation that
pij(t) is continuous for all i, j; hence by uniform convergence the integrand
in (2.25) is continuous and we may differentiate to obtain

p′ij(t) + pij(t)qj =
∑
k ̸=j

pik(t)qkj (2.26)

Hence P (t) solves the forward equation.

To establish minimality let us suppose that p̃ij(t) is another solution of
the forward equation; then we also have

p̃ij(t) = δije
−qit +

∑
k ̸=j

∫ t

0
p̃ik(t− s)qkje

−qjs ds

A small variation of the argument leading to (2.24) shows that, for n ⩾ 0

Pi (Xt = j, t < Jn+1)

= δije
−qit +

∑
k ̸=j

∫ t

0
Pi (Xt = j, t < Jn) qkje

−qjs ds .
(2.27)

If P̃ (t) ⩾ 0, then

P (Xt = j, t < J0) = 0 ⩽ p̃ij(t) for all i, j and t

Let us suppose inductively that

Pi (Xt = j, t < Jn) ⩽ p̃ij(t) for all i, j and t .

then by comparing (2.26) and (2.27) we obtain

Pi (Xt = j, t < Jn+1) ⩽ p̃ij(t) for all i, j and t ,
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and the induction proceeds. Hence

pij(t) = lim
n→∞

Pi (Xt = j, t < Jn) ⩽ p̃ij(t) for all i, j and t .
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2.6 Appendenix

Exponential distribution

A random variable T : Ω → [0,∞] has exponential distribution of pa-
rameter λ (0 ⩽ λ < ∞) if

P(T > t) = e−λt for all t ⩾ 0

We write T ∼ Exp(λ) for short. If λ > 0, then T has density function

fT (t) = λe−λt 1{t⩾0} .

and
ET =

1

λ
, Var(T ) = 1

λ2
.

The exponential distribution plays a fundamental role in continuous-time
Markov chains because of the following results.

Proposition 2.25 (Memoryless property). A random variable T : Ω →
(0,∞] has an exponential distribution if and only if it has the following
memoryless property:

P(T > s+ t | T > s) = P(T > t) for all s, t ⩾ 0

The next result shows that a sum of independent exponential random
variables is either certain to be finite or certain to be infinite, and gives a
criterion for deciding which is true. This will be used to determine whether
or not certain continuous-time Markov chains can take infinitely many jumps
in a finite time.

Proposition 2.26. Let S1, S2, · · · be a sequence of independent random
variables with Sn ∼ Exp (λn) and 0 < λn < ∞ for all n

(i) If
∑∞

n=1
1
λn

< ∞, then P (
∑∞

n=1 Sn < ∞) = 1.

(ii) If
∑∞

n=1
1
λn

= ∞, then P (
∑∞

n=1 Sn = ∞) = 1.
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Proof. (i) Suppose
∑∞

n=1
1
λn

< ∞. Then, by monotone convergence

E
∞∑
n=1

Sn =
∞∑
n=1

1

λn
< ∞ .

and

P

( ∞∑
n=1

Sn < ∞

)
= 1 .

(ii) Suppose instead that
∑∞

n=1
1
λ = ∞. Then

∏∞
n=1

(
1 + 1

λ

)
= ∞ By mono-

tone convergence and independence

E

(
exp

{
−

∞∑
n=1

Sn

})
=

∞∏
n=1

E (exp {−Sn}) =
∞∏
n=1

(
1 +

1

λn

)−1

= 0 .

So

P

( ∞∑
n=1

Sn = ∞

)
= 1 .

The following result is fundamental to continuous-time Markov chains.

Proposition 2.27. Let I be a countable set and let Tk, k ∈ I, be indepen-
dent random variables with Tk ∼ Exp (qk). Suppose 0 < q :=

∑
k∈I qk < ∞.

Set T = infk Tk. Then

(i) the infimum is attained at a unique random value K of k, with prob-
ability 1, and

(ii) T and K are independent, with T ∼ Exp(q) and P(K = k) = qk
q .

Proof. Set K = k if Tk < Tj for all j 6= k, otherwise let K be undefined.
Then

P(K = k and T ⩾ t)

=P (Tk ⩾ t and Tj > Tk for all j 6= k)

=

∫ ∞

t
qke

−qksP (Tj > s for all j 6= k)ds

=

∫ ∞

t
qke

−qks
∏
j ̸=k

e−qjs ds

=

∫ ∞

t
qke

−qs ds = qk
q
e−qt .
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Hence P(K = k for some k) = 1 and T and K have the claimed joint distri-
bution.

Lemma 2.28. Let S1, S2, . . . be independent exponential(λ). The sum Tn =

S1 + · · ·+ Sn has a gamma(n, λ) distribution. That is, the density function
of Tn is given by

fTn(t) = λe−λt · (λt)
n−1

(n− 1)!
for t ≥ 0

and 0 otherwise.

Proposition 2.29. Let S1, S2, · · · be independent exponential r.v.’s of pa-
rameter λ. Let V be an independent geometric r.v. with parameter p. Then
T =

∑V
i=1 Si has exponential distribution of parameter p λ.

Proof. Using the preceeding lemma.

Matrix exponentials

For any matrix Q = (qij : i, j ∈ I) , the series

∞∑
k=0

Qk

k!

converges componentwise and we denote its limit by eQ. Moreover, if two
matrices Q1 and Q2 commute, then

eQ1+Q2 = eQ1eQ2

The proofs of these assertions follow the scalar case closely and are given in
Suppose then that we can find a matrix Q with eQ = P Then

enQ =
(
eQ
)n

= Pn

so
(
etQ : t ≥ 0

)
fills in the gaps in the discrete sequence.
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Proposition 2.30. Let Q be a matrix on a finite set I. Set P (t) = etQ

Then {P (t) : t ≥ 0} has the following properties:

(i) P (s+ t) = P (s)P (t) for all s, t (semigroup property);

(ii) (P (t) : t ≥ 0) is the unique solution to the forward equation
d

dt
P (t) = P (t)Q, P (0) = I .

(iii) (P (t) : t ≥ 0) is the unique solution to the backward equation
d

dt
P (t) = QP (t), P (0) = I .

(iv) for k = 0, 1, 2, . . . , we have(
d

dt

)k
∣∣∣∣∣
t=0

P (t) = Qk .

Proof. For any s, t ∈ R, sQ and tQ commute, so

esQetQ = e(s+t)Q

proving the semigroup property. The matrix-valued power series

P (t) =

∞∑
k=0

(tQ)k

k!

has infinite radius of convergence. So each component is differentiable with
derivative given by term-by-term differentiation:

P ′(t) =
∞∑
k=1

tk−1Qk

(k − 1)!
= P (t)Q = QP (t)

Hence P (t) satisfies the forward and backward equations. Moreover by re-
peated term-by-term differentiation we obtain (iv). It remains to show that
P (t) is the only solution of the forward and backward equations. But if
M(t) satisfies the forward equation, then

d

dt

(
M(t)e−tQ

)
=

(
d

dt
M(t)

)
e−tQ +M(t)

(
d

dt
e−tQ

)
= M(t)Qe−tQ +M(t)(−Q)e−tQ = 0
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so M(t)e−tQ is constant, and so M(t) = P (t). A similar argument proves
uniqueness for the backward equation.

114



Chapter 3

Continuous-time Markov
chains(II)

This chapter brings together the discrete-time and continuous-time the-
ories, allowing us to deduce analogues, for continuous-time chains, of all
the results given in Chapter 1. A reasonable understanding of Chapter 1 is
required here, but, given such an understanding, this chapter should look
reassuringly familiar.

3.1 Basic properties

3.1.1 Class structure

A first step in the analysis of a continuous-time Markov chain (Xt)t⩾0 is
to identify its class structure. We emphasise that we deal only with rninimal
chains, those that die after explosion. Then the class structure is simply
the discrete-time class structure of the jump chain (Yn)n⩾0 , as discussed in
Subection 1.1.3 before.

We say that i leads to j and write i → j, if

Pi (Xt = j for some t ⩾ 0) > 0
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We say i communicates with j and write i ↔ j if both i → j and
j → i. The notions of communicating class, closed class, absorbing state and
irreducibility are inherited from the jump chain.

Theorem 3.1. For distinct states i and j, the following are equivalent:

(i) i → j ;

(ii) i → j for the jump chain ;

(iii) qi0i1qi1i2 · · · qin−1in > 0 for some states i0, i1, · · · , in with i0 = i and
in = j.

(iv) pij(t) > 0 for all t > 0.

(v) pij(t) > 0 for some t > 0.

Proof. Implications (iv) ⇒ (v) ⇒ (i) ⇒ (ii) are clear.

(ii) ⇒ (iii). i → j for the jump chain , then there are states i0, i1, · · · , in
with i0 = i, in = j and πi0i1πi1i2 · · ·πin−1in > 0, which implies (iii).

(iii) ⇒ (iv). If qij > 0, then

pij(t) ⩾ Pi (Y1 = j, J1 ⩽ t, S2 > t) =
(
1− e−qit

)
πije

−qjt > 0 .

for all t > 0, so if (iii) holds, then

pij(t) ⩾ pi0i1(t/n) · · · pin−1in(t/n) > 0

for all t > 0, and (iv) holds.

3.1.2 Hitting probabilities

Let (Xt)t⩾0 be a Markov chain with generator matrix Q. The hitting
time of a subset A of I is the random variable τA defined by

τA(ω) = inf {t ⩾ 0 : Xt(ω) ∈ A}
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with the usual convention that inf ∅ = ∞. We emphasise that (Xt)t⩾0 is
minimal. So if τ (Y )

A is the hitting time of A for the jump chain, then{
τ
(Y )
A < ∞

}
= {τA < ∞}

and on this set we have
τA = J

τ
(Y )
A

The probability, starting from i, that (Xt)t⩾0 ever hits A is then

hi = Pi (τA < ∞) = Pi

(
τ
(Y )
A < ∞

)
When A is a closed class, hi is called the absorption probability. Since the
hitting probabilities are those of the jump chain we can calculate them as
in Section 1.2.

Theorem 3.2. The vector of hitting probabilities (hi)i∈I is the minimal
non-negative solution to the system of linear equations{

hi = 1, for i ∈ A.

hi =
∑

j∈S πijhj , for i /∈ A.
(3.1)

Proof. Apply Theorem 1.8 to the jump chain.

3.1.3 Hitting times

The average time taken, starting from i, for (Xt)t⩾0 to reach A is given
by

ti = Ei (τA) , for i ∈ I .

In calculating ti we have to take account of the holding times so the rela-
tionship to the discrete-time case is not quite as simple.

Theorem 3.3. Q is non-explosive. The vector of mean hitting times (ti)i∈I
is the minimal non-negative solution to the system of linear equations{

ti = 0, for i ∈ A.

ti =
1
qi
+
∑

j ̸=i πijtj , for i /∈ A.
(3.2)
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Proof. First we show that t = (ti)i∈I satisfies (3.2). If X0 = i ∈ A, then
τA = 0, so ti = 0. If X0 = i /∈ A, then τA ⩾ J1, and

ti = Ei (τA) = Ei (J1) +
∑
j ̸=i

E (τA − J1 | Y1 = j)Pi (Y1 = j) ,

by the strong Markov property of (Xt)t⩾0,

Ei (τA − J1 | Y1 = j) = Ej (τA) = tj ,

thus
ti =

1

qi
+
∑
j ̸=i

πijtj .

Suppose now that y = (yi)i∈I is another solution to (3.2). Then ti =

yi = 0 for i ∈ A. Suppose i /∈ A, then

yi =
1

qi
+
∑
j /∈A

πijyj =
1

qi
+
∑
j /∈A

πij

(
1

qj
+
∑
k/∈A

πjkyk

)

= Ei (S1) + Ei

(
S21{τ (Y )

A ⩾2
})+

∑
j /∈A

∑
k/∈A

πijπjkyk .

By repeated substitution for y in the final term we obtain after n steps

yi = Ei (S1) + · · ·+ Ei

(
Sn1{τ (Y )

A ⩾n
})+

∑
j1,··· ,jn /∈A

πij1 · · ·πjn−1jnyjn .

Since y is non-negative

yi ⩾
n∑

m=1

Ei

(
Sm1

τ
(Y )
A ⩾m

)
= Ei

τ
(Y )
A ∧n∑
m=1

Sm

 ,

where we use the notation τ
(Y )
A ∧ n for the minimum of τ (Y )

A and n. Now

τ
(Y )
A∑

m=1

Sm = τA ∧ ζ .

since Q is non-explosive, by monotone convergence,

yi ⩾ Ei (τA ∧ ζ) = Ei (τA) = ti,

as required.

118



3.2 Recurrence and transience

Let (Xt)t⩾0 be Markov chain with generator matrix Q. Recall that we
insist (Xt)t⩾0 be minimal. We say a state i is recurrent if

Pi ({t ⩾ 0 : Xt = i} is unbounded ) = 1 .

We say that i is transient if

Pi ({t ⩾ 0 : Xt = i} is unbounded ) = 0 .

Note that if (Xt)t⩾0 can explode starting from i, then i is certainly NOT
recurrent. The next result shows that, like class structure, recurrence and
transience are determined by the jump chain.

Theorem 3.4. State i ∈ I is recurrent for the jump chain (Yn)n⩾0, if and
only if i is recurrent for (Xt)t⩾0.

Proof. Suppose i is recurrent for (Yn)n⩾0 . Starting at i, (Xt)t⩾0 does not
explode, so Jn → ∞ by Theorem 2.16. Also

XJn = Yn = i

infinitely often, so {t ⩾ 0 : Xt = i} is unbounded, with probability 1.

Suppose i is transient for (Yn)n⩾0 . If X0 = i then

N = sup {n ⩾ 0 : Yn = i} < ∞

so {t ⩾ 0 : Xt = i} is bounded by JN+1, which is finite with probability 1,

because (Yn)n⩽N cannot include an absorbing state.

Corollary 3.5. We have,

(i) every state is either recurrent or transient ;

(ii) recurrence and transience are class properties.
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The next result gives continuous-time analogues of the conditions for
recurrence and transience found in Theorem 1.15. We denote by σi the first
passage time of (Xt)t⩾0 to state i, defined by

σi = inf {t ⩾ J1 : Xt = i} .

Theorem 3.6. The following dichotomy holds:

(i) qi = 0 or Pi (σi < ∞) = 1 ⇔ i is recurrent ⇔
∫∞
0 pii(t)dt = ∞.

(ii) qi > 0 and Pi (σi < ∞) < 1 ⇔ i is transient ⇔
∫∞
0 pii(t)dt < ∞.

Proof. It suffices to show (i). Note that if qi = 0, then (Xt)t⩾0 cannot leave
i, so i is recurrent, pii(t) = 1 for all t, and

∫∞
0 pii(t)dt = ∞.

Suppose then that qi > 0. Let σ
(Y )
i denote the first passage time of the

jump chain (Yn)n⩾0 to state i. Then, we have

σi = J
σ
(Y )
i

,

hence
Pi

(
σ
(Y )
i < ∞

)
= Pi (σi < ∞) .

Thus i is recurrent if and only if Pi (σi < ∞) = 1, by Theorem 1.15 and the
corresponding result for the jump chain.

Claim: Let G
(Y )
ij be the Green function for the jump chain, then∫ ∞

0
pii(t)dt = 1

qi
G

(Y )
ii . (3.3)

So i is recurrent if and only if
∫∞
0 pii(t)dt = ∞, by Theorem 1.15 an dt he

corresponding result for the jump chain. To establish (3.3), we use Fubini’s

theorem,∫ ∞

0
pii(t)dt =

∫ ∞

0
Ei

(
1{Xi=i}

)
dt = Ei

∫ ∞

0
1{Xi=i} dt

= Ei

∞∑
n=0

Sn+11{Yn=i} =
∞∑
n=0

Ei (Sn+1 | Yn = i)Pi (Yn = i)

=
1

qi

∞∑
n=0

Pi (Yn = i) =
1

qi
G

(Y )
ii .
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Let Ti denote the the time (Xt)t⩾0 stayed at i, that is

Ti =

∫ ∞

0
1{Xt=i} dt =

∞∑
n=0

Sn+11{Yn=i} .

Theorem 3.7. Suppose X0 = i and i is transient. Then Ti is a exponential
random variable with parameter qi(1− ρii), where ρii = Pi(Ti < ∞).

Proof. Let Vi be the visiting times for the embedded chain to state i, that
is

Vi =
∞∑
n=0

1{Yn=i} .

We have shown that in Subsection 1.4.2, Vi ∼ geometric(1− ρii).

Let ξ0 = 0 and ξk = inf{n ⩾ ξk−1 + 1 : Yn = i} for k ⩾ 1, is the k-th
passage time for (Yn)n⩾0 to state i. It’s easy to see that

Ti =

Vi∑
k=1

Sξk+1 .

Claim : Let {ηn} be i.i.d. exponential r.v.’s with parameter qi, and {ηn} is
independent with Vi, then

Ti
d
=

Vi∑
k=1

ηk .

To show this, note that

Pi (Sξk+1 ⩽ tk; 1 ⩽ k ⩽ n | Vi = n) = Pi (ηk ⩽ tk; 1 ⩽ k ⩽ n)

Thus, conditional on {Vi = n}, Ti and
∑Vi

k=1 Sξk+1 have the same distribu-
tion. Since n is arbitary,Which deduce that the claim above is ture.

By Proposition 2.29,
∑Vi

k=1 ηk ∼ Exp(qi(1−ρii)), so the same for Ti.

Finally, we show that recurrence an dt ransience are determined by any
discrete-time sampling of (Xt)t⩾0, sometime is calle dt he h-skeleton.
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Theorem 3.8. Let h > 0 be given and, set Zn = Xnh for n ⩾ 0. Then i ∈ I

is recurrent for (Xt)t⩾0 if and only if i is recurrent for (Zn)n⩾0.

Proof. If i ∈ I is recurrent for (Zn)n⩾0, obviously for (Xt)t⩾0. ,

To show the necessity, note that, for t ∈ [nh, (n + 1)h], we have the
estimate

pii((n+ 1)h) ⩾ e−qihpii(t)

which follows from the Markov property. Then, by monotone convergence∫ ∞

0
pii(t)dt ⩽ heqih

∞∑
n=1

pii(nh)

an dt he result follows by Theorem 3.6 and Theorem 1.15.
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3.3 Invariant distributions

In discrete time a measure is invariant if λP = λ. However there is no
first t > 0, in continuous time we need the stronger notion: a measure λ on
I is said to be invariant for {P (t) : t ⩾ 0} if

λP (t) = λ , for all t ⩾ 0 . (3.4)

In addition, if λ is a distribution, it is called a invariant distribution.

The last condition is difficult to check since it involves all of the {P (t)}
and, as we have seen in the previous section, the P (t) are not easy to com-
pute.

Proposition 3.9. Let (Xt)t⩾0 be Markov(λ,Q) and λ is an invariant mea-
sure for the semigroup {P (t)}. Then for any s ⩾ 0, (Xt+s)t⩾0 is also
Markov(λ,Q).

Proof. Firstly, for each i ∈ I,

P (Xs = i) = (λP (s))i = λi .

On the other hand, by the Markov property, we have that (Xs+t)t⩾0 is
Markov(δi, Q) conditional on {Xs = i}.

Based on this property, invariant distribution is also called stationary
distribution.

Lemma 3.10. Let Q be irreducible. If λ is an invariant measure for {P (t)},
then λ = 0, or 0 < λ < ∞. Paricularly, if λ is an invariant distribution for
P (t), then λi > 0 for all i.

Proof. Since Q is ireducible, for any i, j ∈ I, we have

pij(t) > 0 , for all t > 0 .

Thus if λi > 0

λj ⩾ λipij(t) > 0 .
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3.3.1 Existence and uniqueness of invariant measures

In continuous-time, by iterating the equation (3.4) we get nothing. How-
ever, we still define

Γi
j := Ei

∫ σi

0
1{Xs=j} ds =

∫ ∞

0
Pi (Xs = j, s ⩽ σi)ds ¶

for any i, j ∈ I. Then we will check if Γi = (Γi
j)j∈I is a invariant measure

for P (t). Moreover, it’s easy to see that Γi
i =

1
qi

.

Theorem 3.11. Suppose i is recurrent. Then Γi = (Γj
i )j∈I is an invariant

measure for {P (t)}.

Remark. By the “cycle trick”, it’s easy to see that the theorem is ture.
Γi
j is the expected time staying in state j in [0, σi]. Multiplying by P (t)

moves us forward t in time so
(
ΓiP (t)

)
j

is the expected time staying in
state j in [t, σi + t]. We need the condition i is recurrent, then σi < ∞ and
(Xσi+t)t⩾0 is Markov(δi, Q), then the expected time staying in state j in
[0, t] and [σ, σi + t] consides, so we have Γi

j =
(
ΓiP (t)

)
j
.

Proof. For any k ∈ S,∑
j∈S

Γj
ipjk(t) =

∑
j∈S

∫ ∞

0
pjk(t)Pi (Xs = j, s ⩽ σi)ds

=
∑
j∈S

∫ ∞

0
Pi (Xs = j,Xs+t = k, s ⩽ σi)ds

=

∫ ∞

0
Pi (Xs+t = k, s ⩽ σi)ds

=

∫ ∞

t
Pi (Xu = k, u ⩽ σi + t) du

= Ei

∫ σi+t

t
1{Xu=k} du

¶In fact, we omitted that X : [0,∞)× Ω → I ; (t, ω) 7→ Xt(ω) is measurable.
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Since i is recurrent, under Pi we have σi < ∞, and by strong Markov
property, (Xσi+t)t⩾0 is Markov(δi, Q), thus

Ei

∫ σi+t

σi

1{Xu=k}du = Ei

∫ t

0
1{Xu+σi=k}du = Ei

∫ t

0
1{Xu=k}du = Γi

k .

So we get
∑

j∈S Γi
jpjk(t) = Γi

k, in other words, ΓiP (t) = Γi for all t ⩾ 0.

Remark. Without the condition that i is recurrent, we can see Γi is not
always invariant from the proof above.

Now we have a sufficient condition for the existence of invariant measure,
how about uniqueness?

Theorem 3.12. Let Q be irreducible and recurrent, then {P (t)} has an
unique invariant measure up to scalar multiples.

Proof. Since Q irreducible and recurrent, it’s h-skeleton is irreducible and
recurrent. The invariant measure of P (t) is obviously invariant for P (h),
but P (h) has an unique invariant measure.

3.3.2 Existence and uniqueness of invariant distributions

Firstly, if {P (t)} has an invariant measure λ and Λ :=
∑

i∈S λi < ∞, we
defnie

λ̃i =
λi

Λ
, for all i ∈ I .

Then λ̃ is an invariant distribution for {P (t)}. Suppose that i isrecurrent
now, ∑

j∈S
Γi
j =

∑
j∈S

Ei

∫ σi

0
1{Xt=j} dt = Ei

∫ σi

0

∑
j∈S

1{Xt=j} dt

= Ei

∫ σi

0
1{t<ζ} dt = Ei(σi ∧ ζ) .

(3.5)
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Note that the chain starting at i will not explode, thus∑
j∈S

Γi
j = Ei(σi) , (3.6)

is exactly the expected return time to i when starting from i, and write
Eiσi as mi for short. We shall introduce the following definition .

Definition 3.1. We say a state i is positive recurrent if qi = 0, or
mi < ∞, and a recurrent state which fails to have this stronger property is
called null recurrent.

Thus, if I has a positive recurrent i, by normalizing Γi, we get an invari-
ant distribution λ = Γi

mi
. The next theorem says that positive recurrence is

a class property, and an irreducible chain has invariant distribution iff it is
positive recurrent.

Theorem 3.13. Let Q be irreducible. Then the following are equivalent:

(i) every state is positive recurrent.

(ii) some state i is positive recurrent.

(iii) P (t) has an invariant distribution.

(iv) P (t) has an unique invariant distribution λ and λi =
1

qimi
for all i ∈ I.

Proof. (i) ⇒ (ii) is obvious.
(ii) ⇒ (iii). If i is positive recurrent, so Q is recurrent. So Γi is then

invariant, and ∑
j∈I

Γi
j = mi < ∞ .

So λ = 1
mi

Γi defines an invariant distribution for P .
(iii) ⇒ (iv) ⇒ (i). 遍历定理.
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3.3.3 Jump chain

Note that {P (t)} satisfies the forward equation P ′(t) = P (t)Q, thus if λ
is an invariant measure, λP (t) = λ, taking the derivative and supposing the
order of summation and differentiation can be exchanged, we get

λQ = λP (t)Q = λP ′(t) = 0 .

As we can see, the equation “ λQ = 0 ” describes the balance of 速率流.
Thus, it’s natural to ask that, what is the relationship between these two
equations

λQ = 0 and, λP (t) = λ for all t .

A first result is that the equation λQ = 0 tie-up with measures invariant
for the jump matrix.

Theorem 3.14. Let Q be a Q-matrix with jump matrix Π. λ, µ be two
measures on I, such that µi = λiqi. Then λ is invariant for {P (t)} if and
only if µ is invariant for Π.

Proof. Note that qi (πij − δij) = qij for all i, j, so

(µ(Π− I))j =
∑
i∈I

µi (πij − δij) =
∑
i∈I

λiqij = (λQ)j .

Corollary 3.15. Q is irreducible, and λ is a measure so that λQ = 0, then
either λ = 0 or λ > 0.

proof. If λi > 0, for any j, since Q is irreducible there exists i = i0, · · · , in =

j so that
qi0i1 · · · qin−1in > 0 .

Thus λjqj ⩾ λiqi0ii · · · qin−1in > 0.
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Second proof. Let us exclude the trivial case I = {i}. Then we have qi > 0

for all i ∈ I. Since µ is invariant for Π, and Π is irreducible, then either
µ = 0 or µ > 0, so the corollary follows.

Corollary 3.16. Suppose that Q is irreducible and recurrent. Then Q has
an invariant measure λ which is unique up to scalar multiples.

Proof. Let us exclude the trivial case I = {i}; then irreducibility forces
qi > 0 for all i. We have Π is irreducible and recurrent, so Π has an
invariant measure µ, which is unique up to scalar multiples. So, by Theorem
3.14 we can take λi =

µi

qi
to obtain an invariant measure unique up to scalar

multiples.

We will discussing the following three questions.

• What’s the relationship between the invariant measures for Markov
chain and that for jump chain ?

• What’s the relationship between the invariant distributions for Markov
chain and that for jump chain ?

• If λ is a distribution on I, can we use the equation “λQ = 0” to replace
“λP (t) = λ, ∀ t” ?

Theorem 3.17. Q is irreducible and recurrent, λ, µ are measures on I and
µi = qiλi for all i ∈ I. Then we have

λP (t) = λ for all t ⩾ 0 ⇔ µΠ = µ ⇔ λQ = 0 . (3.7)

Proof. By Corollary 3.16, Theorem 3.11 and Theorem 1.22, it suffices to
show that

Γi
j =

γij
qj

(3.8)

where, γij is the expected time in j between visits to i for the jump chain.
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Claim : If Q is irreducible, then (3.8) holds for all i, j ∈ I.
To see this, denote by σ

(Y )
i the first passage time of the jump chain to state

i. Using Fubini’s theorem we have

Γi
j = Ei

∫ σi

0
1{Xs=j} ds = Ei

∞∑
n=0

Sn+11{Yn=j,n<σ
(Y )
i

}

=

∞∑
n=0

Ei

(
Sn+1 | Yn = j, n < σ

(Y )
i

)
Pi

(
Yn = j, n < σ

(Y )
i

)
=

1

qj
Ei

∞∑
n=0

1{
Yn=j,n<σ

(Y )
i

} =
γij
qj

.

Theorem 3.18. Q is irreducible, then λ, µ are measures on I and µi = qiλi

for all i ∈ I.

• Suppose λ is the invariant distribution for {P (t)}, or equivalently, (Xt)

is positive recurrent, and µ can be normalized, then (Yn) is positive
recurrent.

• Suppose µ is the invariant distribution for Π , or equivalently, (Yn)

is positive recurrent, and λ can be normalized, then (Xt) is positive
recurrent.

Proof. (Xt) is positive recurrent or (Yn) is positive recurrent both implies
Q is recurrent, so by Theorem 3.17 the desired result is trival.

Theorem 3.19. Q is irreducible, λ is a distribution on I, then

λP (t) = λ for all t ⇔ λQ = 0 and Q is non-explosive . (3.9)

Proof. If λ is the invariant distribution for {P (t)}, then Q is recurrent, so
Q is non-explosive. By Theorem 3.17, λQ = 0 follows.

If λQ = 0, then by Theorem 3.14 µ is invariant for Π, where µ defined
by µi = qiλi for all i. So, in Section 1.5.2 we have shown that

µj

µi
⩾ γij for all i, j .
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Thus by (3.8),

∑
j

Γi
j =

∑
j

γij
qj

⩽
∑
j

µj

µi
=
∑
j

λj

qiλi
=

1

qiλi
< ∞ ,

and since Q is non-explosive, by 3.5 we have

mi =
∑
j

Γi
j < ∞

So Q is positive recurrent, and hence recurrent, by Theorem 3.17 λ is the
invariant distribution for {P (t)}.

Counterexamples First we give a counterexample such that we can not
give up the condition that Q is non-explosive in Theorem 3.19.

¶ Example 3.1. Q is irreducible, π is a distribution on I, πQ = 0 but Q

is explosive.

Consider the birth-death process with the following diagram, where qi,i+1 =

2× 3i and qi,i−1 = 3i for i ⩾ 1. By detailed balance condition, we can find

3.5 Invariant distributions 119

where, in the notation of Section 1.7, γi
j is the expected time in j between

visits to i for the jump chain.
Suppose (ii) holds, then i is certainly recurrent, so the jump chain is

recurrent, and Q is non-explosive, by Theorem 2.7.1. We know that γiΠ =
γi by Theorem 1.7.5, so µiQ = 0 by Theorem 3.5.1. But µi has finite total
mass ∑

j∈I

µi
j = Ei(Ti) = mi

so we obtain an invariant distribution λ by setting λj = µi
j/mi.

On the other hand, suppose (iii) holds. Fix i ∈ I and set νj =
λjqj/(λiqi); then νi = 1 and νΠ = ν by Theorem 3.5.1, so νj ≥ γi

j for
all j by Theorem 1.7.6. So

mi =
∑
j∈I

µi
j =

∑
j∈I

γi
j/qj ≤

∑
j∈I

νj/qj

=
∑
j∈I

λj/(λiqi) = 1/(λiqi) <∞

showing that i is positive recurrent.
To complete the proof we return to the preceding calculation armed

with the knowledge that Q is recurrent, hence Π is recurrent, νj = γi
j and

mi = 1/(λiqi) for all i.

The following example is a caution that the existence of an invariant
distribution for a continuous-time Markov chain is not enough to guarantee
positive recurrence, or even recurrence.

Example 3.5.4

Consider the Markov chain (Xt)t≥0 on Z
+ with the following diagram,

where qi > 0 for all i and where 0 < λ = 1 − µ < 1:

0 1 i− 1 i i+ 1

q01 qi,i-1 qi,i+1

The jump chain behaves as a simple random walk away from 0, so (Xt)t≥0

is recurrent if λ ≤ µ and transient if λ > µ. To compute an invariant
measure ν it is convenient to use the detailed balance equations

νiqij = νjqji for all i, j.

Figure 3.1: Birth-death process

the (unique) invariant distribution

πi =
1

3
×
(
2

3

)i

, for all i ⩾ 0 .

However, we show that the Markov chain (Xt)t⩾0 will explode when starting
at 0. Firstly, denote G

(Y )
ii the Green function of the jump chain (Yn) at state
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i, then

ζ =

∫ ∞

0
1{t<ζ}dt =

∫ ∞

0

∑
i

1{Xt=i}dt =
∑
i

∫ ∞

0
1{Xt=i}dt .

Thus

E0ζ =
∑
i

E0

∫ ∞

0
1{Xt=i}dt =

∑
i

EiVi =
∑
i

G
(Y )
ii

qi
.

It’s easy to find that {G(Y )
ii }i⩾0 are uniformly bounded, thus E0ζ < ∞ and

Q is explosive.

¶ Example 3.2. Q is irreducible and positive recurrent, but Π is null re-
current.

Consider the birth-death chain (Yn)n⩾0 with the following diagram, where
b0 = 1, b1 = d1 =

1
2 and bi =

i−1
2i−1 , di = i

2i−1 for i ⩾ 2.

16 1. Discrete-time Markov chains

and again the restriction 0 ≤ hi ≤ 1 forces B = 0, so hi = 1 for all i.
Thus, even if you find a fair casino, you are certain to end up broke. This
apparent paradox is called gamblers’ ruin.

Example 1.3.4 (Birth-and-death chain)

Consider the Markov chain with diagram

0 1 i i+ 1

d1 di bi di+1b1 bi+1

where, for i = 1, 2, . . . , we have 0 < pi = 1 − qi < 1. As in the preceding
example, 0 is an absorbing state and we wish to calculate the absorption
probability starting from i. But here we allow pi and qi to depend on i.

Such a chain may serve as a model for the size of a population, recorded
each time it changes, pi being the probability that we get a birth before
a death in a population of size i. Then hi = Pi(hit 0) is the extinction
probability starting from i.

We write down the usual system of equations

h0 = 1,

hi = pihi+1 + qihi−1, for i = 1, 2, . . . .

This recurrence relation has variable coefficients so the usual technique fails.
But consider ui = hi−1 − hi, then piui+1 = qiui, so

ui+1 =
(
qi
pi

)
ui =

(
qiqi−1 . . . q1
pipi−1 . . . p1

)
u1 = γiu1

where the final equality defines γi. Then

u1 + . . .+ ui = h0 − hi

so
hi = 1 −A(γ0 + . . . + γi−1)

where A = u1 and γ0 = 1. At this point A remains to be determined. In
the case

∑∞
i=0 γi = ∞, the restriction 0 ≤ hi ≤ 1 forces A = 0 and hi = 1

for all i. But if
∑∞

i=0 γi <∞ then we can take A > 0 so long as

1 − A(γ0 + . . .+ γi−1) ≥ 0 for all i.

Figure 3.2: brith-death chain

Firstly, note that di > bi for i ⩾ 2, so (Yn)n⩾0 is recurrent by Example
1.14. To show it is null recurrent, we use detailed balanced conditions,

πi
i

2i− 1
= πi−1

i− 2

2i− 3
, for i ⩾ 3 .

so
πi
π2

=
i∏

k=3

k − 2

k

2k − 1

2k − 3
=

2

i(i− 1)
× 2i− 1

3
= O(

1

i
) ,

Thus
∑

i πi = ∞, (Yn)n⩾0 is null recurrent.

However, Let (Yn) be the jump chain of (Xt)t⩾0 and qi = i for all i ⩾ 1,
the invariant distribution of (Xt)t⩾0 is λi =

πi
qi

= πi
i , so we have

λi

λ2
=

2

i
× 2

i(i− 1)
× 2i− 1

3
= O(

1

i2
) ,
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Thus
∑

i λi < ∞, (Xt)t⩾0 is positive recurrent.

¶ Example 3.3. Q is irreducible and null recurrent, but Π is positive re-
current.

Let (Yn)n⩾0 be a positive recurrent birth-death chain with invariant dis-
tribution π. Let (Yn) be the jump chain of (Xt)t⩾0 and qi = πi for all i ⩾ 0.
Then λi =

πi
qi

= 1 is an invariant measure for {Xt}, and therefore {Xt} is
null recurrent.
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3.4 Time reversal

Time reversal of continuous-time chains has the same features found in
the discrete-time case. Reversibility provides a powerful tool in the analysis
of Markov chains, as we shall see in Section 3.6. Note in the following
result how time reversal interchanges the roles of backward and forward
equations. This echoes our proof of the forward equation, which rested on
the time reversal identity of Lemma 2.23.

A small technical point arises in time reversal: right-continuous processes
become left-continuous processes. For the processes we consider, this is
unimportant. We could if we wished redefine the time-reversed process
to equal its right limit at the jump times, thus obtaining again a right-
continuous process. We shall suppose implicitly that this is done, and forget
about the problem.

Theorem 3.20. Let Q be irreducible and non-explosive and suppose that Q
has an invariant distribution λ. Let T ∈ (0,∞) be given and let (Xt)0⩽t⩽T be
Markov(λ,Q). Set X̂t = XT−t. Then the process (X̂t)0⩽t⩽T is Markov(λ, Q̂),

where Q̂ = (q̂ij)i,j∈I is given by λiq̂ij = λjqji. Moreover, Q̂ is also irreducible
and non-explosive with invariant distribution λ.

Proof. Clearly, (X̂t)0⩽t⩽T is minimal right-continuous process with values
in I. For 0 ⩽ t0 < · · · < tn+1 ⩽ T , we have

P
(
X̂tn+1 = j | X̂tn = i, X̂t0 = i0, · · · , X̂tn−1 = in−1

)
= P

(
XT−tn+1 = j | XT−tn = i,XT−t0 = i0, · · · , XT−tn−1 = in−1

)
= P

(
XT−tn+1 = j | XT−tn = i

)
=

λjpji(tn+1 − tn)

λi
.

Define P̂ (t) = (p̂ij(t))i,j∈I by

λip̂ij(t) = λjpji(t) for all i, j ∈ I ,
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then P̂ (t) is an irreducible stochastic matrix with invariant distribution λ

and we can rewrite the forward equation of {P (t)} transposed as

P̂ ′(t) = Q̂P̂ (t) .

But this is the backward equation for Q̂, which is itself a Q-matrix, and P̂ (t)

is then its minimal non-negative solution. Hence (X̂t)0⩽t⩽T is Markov(λ, Q̂).
The chain (X̂t)0⩽t⩽T is called the time-reversal of (Xt)0⩽t⩽T .

Reversibility and detailed balance Let (Xt)t⩾0 be Markov (λ,Q),

with Q irreducible and non-explosive. We say that (Xt)t⩾0 is reversible if,
for all T > 0, (XT−t)0⩽t⩽T is also Markov(λ,Q).

A Q-matrix Q and a measure λ are said to be in detailed balance if

λiqij = λjqji for all i, j .

Clearly, If Q and λ are in detailed balance then λQ = 0.

Theorem 3.21. Let Q be an irreducible and non-explosive Q-matrix and
let λ be a distribution. Suppose that (Xt)t⩾0 is Markov(λ,Q). Then the
following are equivalent:

(i) (Xt)t⩾0 is reversible;

(ii) Q and λ are in detailed balance.

Proof. Both (i) and (ii) imply that λ is invariant for Q. Then both (i) and
(ii) are equivalent to the statement that Q̂ = Q in Theorem 3.20.
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3.5 Long-run behavior

We now investigate the limiting behaviour of pij(t) as t → ∞ and its
relation to invariant distributions. You will see that the situation is analo-
gous to the case of discrete-time, only there is no longer any possibility of
periodicity. We shall need the following estimate of uniform continuity for
the transition probabilities.

3.5.1 Ergodic theorem

Long-run averages for continuous-time chains display the same sort of
behaviour as in the discrete-time case, and for similar reasons. Here is the
result.

Theorem 3.22 (Ergodic theorem). Let Q be irreducible and let λ be
any distribution. (Xt)t≥0 is Markov(λ,Q), then as t → ∞,

1

t

∫ t

0
1{Xs=i} ds → 1

qimi
a.s.

where mi = Ei (σi) is the expected return time to state i.

Proof. Suppose qi > 0 for all i ∈ I. If Q is transient then the total time
spent in any state i is finite, clearly

1

t

∫ t

0
1{X,=i} ds ≤ 1

t

∫ ∞

0
1{X,=i} ds → 0 =

1

qimi
.

Suppose then that Q is recurrent and fix a state i. Then (Xt)t≥0 hits i with
probability 1 and the long-run proportion of time in i equals the longrun
proportion of time in i after first hitting i. So, by the strong Markov property
(of the jump chain), it suffices to consider the case λ = δi.

Denote by T
(n)
i the time of the n th return to i, and by M

(n)
i the length

of the n th visit to i. That is, for n ∈ N, setting T
(0)
i = 0, we have

M
(n+1)
i = inf

{
t > T

(n)
i : Xt 6= i

}
− T

(n)
i ,

T
(n+1)
i = inf

{
t > T

(n)
i +M

(n+1)
i : Xt = i

}
.
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Now, for T
(n)
i ≤ t < T

(n+1)
i we have

M
(1)
i + · · ·+M

(n)
i

T
(n+1)
i

≤ 1

t

∫ t

0
1{X,=i} ds ≤ M

(1)
i + · · ·+M

(n+1)
i

T
(n)
i

.

Denote by L
(n)
i the length of the n th excursion to i, that is,

L
(n)
i = T

(n+1)
i − T

(n)
i .

By the strong Markov property (of the jump chain) at the stopping times
T
(n)
i for n ∈ N, we find that L

(1)
i , L

(2)
i , · · · are independent and identically

distributed with mean mi, and that M
(1)
i ,M

(2)
i , · · · are independent and

identically distributed with mean 1
qi

. Hence, by the strong law of large
numbers, as n → ∞

T
(n)
i

n
=

L
(1)
i + · · ·+ L

(n)
i

n
→ mi a.s.

M
(1)
i + · · ·+M

(n)
i

n
→ 1

qi
a.s.

and hence
M

(1)
i + · · ·+M

(n)
i

T
(n)
i

→ 1

miqi
a.s.

So on letting t → ∞ we have, with probability 1

1

t

∫ t

0
1{X,=i} ds → 1

miqi
.

Corollary 3.23. Let Q be irreducible and positive recurrent with the in-
variant distribution λ. (Xt)t≥0 is Markov(λ,Q), f : I → R is a bounded
function. Then as t → ∞,

1

t

∫ t

0
f (Xs)ds →

∫
I
f dλ a.s.

Proof. In the positive recurrent case we can write

1

t

∫ t

0
f (Xs) ds−

∫
I
f dλ =

∑
i∈I

fi

(
1

t

∫ t

0
1{X,s=i}ds− λi

)
.
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where λi =
1

miqi
. We conclude that

1

t

∫ t

0
f (Xs) ds →

∫
I
f dλ as t → ∞ .

with probability 1, by the same argument as was used in the proof of The-
orem 1.35.

3.5.2 Convergence to equilibrium

Theorem 3.24 (Convergence to equilibrium). Let Q be an irreducible
non-explosive Q-matrix with semigroup {P (t)}, and having an invariant
distribution λ. Then for all states i, j we have

pij(t) → λj as t → ∞ .

Proof. Let (Xt)t≥0 be Markov (δi, Q). Fix h > 0 and consider the h-skeleton
Zn = Xnh. Then

P (Zn+1 = j | Zn = i, Z0 = i0, · · · , Zn−1 = in−1) = pij(h)

so (Zn)n≥0 is discrete-time Markov(δi, P (h)). By Theorem 3.1 irreducibility
implies pij(h) > 0 for all i, j so P (h) is irreducible and aperiodic. Clearly,
λ is invariant for P (h). So, by discrete-time convergence to equilibrium, for
all i, j ∈ I

pij(nh) → λj as n → ∞ .

Thus we have a lattice of points along which the desired limit holds; we fill
in the gaps using uniform continuity, Proposition 2.19. Fix a state i, given
ϵ > 0 we can find h > 0 so that

1− e−qit ≤ ϵ

2
for 0 ≤ t ≤ h

and then find N, so that

|pij(nh)− λj | ≤ ϵ/2 for n ≥ N
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For t ≥ Nh we have nh ≤ t < (n+ 1)h for some n ≥ N and

|pij(t)− λj | ≤ |pij(t)− pij(nh)|+ |pij(nh)− λj | ≤ ε

by Proposition 2.19. Hence

pij(t) → λj as n → ∞ .

The complete description of limiting behaviour for irreducible chains in
continuous time is provided by the following result. We do not give the
details.

Theorem 3.25. Let Q be an irreducible non-explosive Q-matrix and let λ

be any distribution. Suppose that (Xt)t⩾0 is Markov(λ,Q). Then for all
states i

P(Xt = i) → 1

qimi
as t → ∞ .

Proof. Let (Yn)n⩾0 be the embedded chain, and let

σ
(Y )
i = inf{n ⩾ 1 : Yn = i} .

It follows from Theorem 1.41, by the same argument we used in the proof
Theorem 3.24,

P(Xt = i) → 1

Eiσ
(Y )
i

Note that mi = Eiσi =
1
qi
Eiσ

(Y )
i , we have completed the proof now.
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3.6 Queues and queueing networks

Queues form in many circumstances and it is important to be able to
predict their behaviour. The basic mathematical model for queues runs as
follows: there is a succession of customers wanting service; on arrival each
customer must wait until a server is free, giving priority to earlier arrivals; it
is assumed that the times between arrivals are independent random variables
of the same distribution, and the times taken to serve customers are also
independent random variables, of some other distribution.

The main quantity of interest is the random process (Xt)t⩾0 recording
the number of customers in the queue at time t. This is always taken to
include both those being served and those waiting to be served.

In cases where inter-arrival times and service times have exponential
distributions, (Xt)t⩾0 turns out to be a continuous-time Markov chain, so
we can answer many questions about the queue.

In each example we shall aim to describe some salient features of the
queue in terms of the given data of arrival-time and service-time distribu-
tions.

• We shall find conditions for the stability of the queue .

• In the stable case find means to compute the equilibrium distribution
of queue length.

• We shall also look at the random times that customers spend waiting
and the length of time that servers are continuously busy.

¶ Example 3.4 (M/M/1 queue). This is the simplest queue of all. The code
means: memoryless inter-arrival times/memoryless service times/one server.
Let us suppose that the inter-arrival times are exponential of parameter λ,
and the service times are exponential of parameter µ. Then the number of
customers in the queue (Xt)t⩾0 evolves as a Markov chain with the following
diagram:
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quantity of interest is the random process (Xt)t≥0 recording the number
of customers in the queue at time t. This is always taken to include both
those being served and those waiting to be served.

In cases where inter-arrival times and service times have exponential
distributions, (Xt)t≥0 turns out to be a continuous-time Markov chain, so
we can answer many questions about the queue. This is the context of
our first six examples. Some further variations on queues of this type have
already appeared in Exercises 3.4.1, 3.6.3, 3.7.1 and 3.7.2.

If the inter-arrival times only are exponential, an analysis is still pos-
sible, by exploiting the memorylessness of the Poisson process of arrivals,
and a certain discrete-time Markov chain embedded in the queue. This is
explained in the final two examples.

In each example we shall aim to describe some salient features of the
queue in terms of the given data of arrival-time and service-time distribu-
tions. We shall find conditions for the stability of the queue, and in the
stable case find means to compute the equilibrium distribution of queue
length. We shall also look at the random times that customers spend wait-
ing and the length of time that servers are continuously busy.

Example 5.2.1 (M/M/1 queue)

This is the simplest queue of all. The code means: memoryless inter-arrival
times/memoryless service times/one server. Let us suppose that the inter-
arrival times are exponential of parameter λ, and the service times are
exponential of parameter µ. Then the number of customers in the queue
(Xt)t≥0 evolves as a Markov chain with the following diagram:

0 1 i i+ 1

µ µ µλλ λλ

To see this, suppose at time 0 there are i customers in the queue, where
i > 0. Denote by T the time taken to serve the first customer and by A

the time of the next arrival. Then the first jump time J1 is A∧ T , which is
exponential of parameter λ + µ, and XJ1 = i − 1 if T < A, XJ1 = i + 1 if
T > A, which events are independent of J1, with probabilities µ/(λ+µ) and
λ/(λ+µ) respectively. If we condition on J1 = T , then A−J1 is exponential
of parameter λ and independent of J1: the time already spent waiting for an
arrival is forgotten. Similarly, conditional on J1 = A, T − J1 is exponential
of parameter µ and independent of J1. The case where i = 0 is simpler
as there is no serving going on. Hence, conditional on XJ1 = j, (Xt)t≥0

• The M/M/1 queue thus evolves like a random walk, except that it
does not take jumps below 0. We deduce that

(i) if λ > µ then (Xt)t⩾0 is transient, that is Xt → ∞ as t → ∞.

Thus if λ > µ the queue grows without limit in the long term ;

(ii) when λ < µ, (Xt)t⩾0 is positive recurrent with invariant distri-
bution

πi =

(
1− λ

µ

)(
λ

µ

)i

, for i ⩾ 0 .

• When λ < µ the average number of customers in the queue in equilib-
rium is given by

Eπ (Xt) =
∞∑
i=1

Pπ (Xt ⩾ i) =
∞∑
i=1

(
λ

µ

)i

=
λ

µ− λ
.

• Also, the mean time to return to 0 is given by

m0 =
1

q0π0
=

µ

λ(µ− λ)
,

so the mean length of time that the server is continuously busy is given
by

m0 −
1

q0
=

1

µ− λ
.

• Another quantity of interest is the mean waiting time for a typical
customer, when λ < µ and the queue is in equilibrium. Conditional
on finding a queue of length i on arrival, this is i+1

µ , so the overall
mean waiting time is

Eπ (Xt + 1)

µ
=

1

µ− λ
.
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Thus, once the queue size is identified as a Markov chain, its behaviour
is largely understood. Even in more complicated examples where exact
calculation is limited, once the Markovian character of the queue is noted we
know what sort of features to look for transience and recurrence, convergence
to equilibrium, long-run averages, and so on.

¶ Example 3.5 (M/M/s queue). This is a variation on the last example
where there is one queue but there are s servers. Let us assume that the
arrival rate is λ and the service rate by each server is µ. Then if i servers
are occupied, the first service is completed at the minimum of i indepen-
dent exponential times of parameter µ. The first service time is therefore
exponential of parameter iµ. The total service rate increases to a maximum
sµ when all servers are working. We emphasise that the queue size includes
those customers who are currently being served. The queue size (Xt)t⩾0

performs a Markov chain with the following diagram:
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Example 5.2.2 (M/M/s queue)

This is a variation on the last example where there is one queue but there
are s servers. Let us assume that the arrival rate is λ and the service
rate by each server is µ. Then if i servers are occupied, the first service is
completed at the minimum of i independent exponential times of parameter
µ. The first service time is therefore exponential of parameter iµ. The total
service rate increases to a maximum sµ when all servers are working. We
emphasise that the queue size includes those customers who are currently
being served. By an argument similar to the preceding example, the queue
size (Xt)t≥0 performs a Markov chain with the following diagram:

0 1 2 s s+ 1

µ 2µ sµ sµ λλ λ λλ

So this time we obtain a birth-and-death chain. It is transient in the
case λ > sµ and otherwise recurrent. To find an invariant measure we look
at the detailed balance equations

πiqi,i+1 = πi+1qi+1,i.

Hence

πi/π0 =
{

(λ/µ)i/i! for i = 0, 1, . . . , s
(λ/µ)i/(si−ss!) for i = s+ 1, s+ 2, . . . .

The queue is therefore positive recurrent when λ < sµ. There are two cases
when the invariant distribution has a particularly nice form: when s = 1
we are back to Example 5.2.1 and the invariant distribution is geometric of
parameter λ/µ:

πi = (1 − λ/µ)(λ/µ)i.

When s = ∞ we normalize π by taking π0 = e−λ/µ so that

πi = e−λ/µ(λ/µ)i/i!

and the invariant distribution is Poisson of parameter λ/µ.
The number of arrivals by time t is a Poisson process of rate λ. Each

arrival corresponds to an increase in Xt, and each departure to a decrease.
Let us suppose that λ < sµ, so there is an invariant distribution, and
consider the queue in equilibrium. The detailed balance equations hold and
(Xt)t≥0 is non-explosive, so by Theorem 3.7.3 for any T > 0, (Xt)0≤t≤T

So this time we obtain a birth-and-death chain. It is transient in the
case λ > sµ and otherwise recurrent. To find an invariant measure we look
at the detailed balance equations

πiqi,i+1 = πi+1qi+1,i

Hence

πi
π0

=


1

i!
(
λ

µ
)i for i = 0, 1, · · · , s

1

si−ss!
(
λ

µ
)i for i ⩾ s+ 1 .

The queue is therefore positive recurrent when λ < sµ. There are two cases
when the invariant distribution has a particularly nice form: when s = 1

we are back to Example 3.4 and the invariant distribution is geometric of
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parameter λ
µ :

πi = (1− λ

µ
)(
λ

µ
)i .

When s = ∞ we normalize π by taking π0 = e−
λ
µ so that

πi = e−
λ
µ
1

i!
(
λ

µ
)i .

and the invariant distribution is Poisson of parameter λ
µ .

The number of arrivals by time t is a Poisson process of rate λ. Each
arrival corresponds to an increase in Xt, and each departure to a decrease.
Let us suppose that λ < sµ, so there is an invariant distribution, and con-
sider the queue in equilibrium. The detailed balance equations hold and
(Xt)t⩾0 is non-explosive, so by Theorem 3.21 for any T > 0, (Xt)0⩽t⩽T and
(XT−t)0⩽t⩽T have the same law. It follows that, in equilibrium, the number
of departures by time t is also a Poisson process of rate λ. This is slightly
counter-intuitive, as one might imagine that the departure process runs in
fits and starts depending on the number of servers working. Instead, it turns
out that the process of departures, in equilibrium, is just as regular as the
process of arrivals.

¶ Example 3.6 (Telephone exchange). A variation on the M/M/s queue is
to turn away customers who cannot be served immediately. This might serve
as a simple model for a telephone exchange, where the maximum number of
calls that can be connected at once is s: when the exchange is full, additional
calls are lost. The maximum queue size or buffer size is s and we get the
following modified Markov chain diagram :
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and (XT−t)0≤t≤T have the same law. It follows that, in equilibrium, the
number of departures by time t is also a Poisson process of rate λ. This is
slightly counter-intuitive, as one might imagine that the departure process
runs in fits and starts depending on the number of servers working. Instead,
it turns out that the process of departures, in equilibrium, is just as regular
as the process of arrivals.

Example 5.2.3 (Telephone exchange)

A variation on the M/M/s queue is to turn away customers who cannot
be served immediately. This might serve as a simple model for a telephone
exchange, where the maximum number of calls that can be connected at
once is s: when the exchange is full, additional calls are lost. The maximum
queue size or buffer size is s and we get the following modified Markov chain
diagram:

0 1 2 s− 1 s

µ 2µ (s− 1)µ sµλ λ λλ

We can find the invariant distribution of this finite Markov chain by solving
the detailed balance equations, as in the last example. This time we get a
truncated Poisson distribution

πi =
(λ/µ)i

i!

/ s∑
j=0

(λ/µ)j

j!
.

By the ergodic theorem, the long-run proportion of time that the exchange
is full, and hence the long-run proportion of calls that are lost, is given by

πs =
(λ/µ)s

s!

/ s∑
j=0

(λ/µ)j

j!
.

This is known as Erlang’s formula. Compare this example with the bus
maintenance problem in Exercise 3.7.1.

Example 5.2.4 (Queues in series)

Suppose that customers have two service requirements: they arrive as a
Poisson process of rate λ to be seen first by server A, and then by server

We can find the invariant distribution of this finite Markov chain by
solving the detailed balance equations, as in the last example. This time we
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get a truncated Poisson distribution

πi =
(λ/µ)i

i!
/

s∑
j=0

(λ/µ)j

j!
for i = 0, · · · , s .

By the ergodic theorem, the long-run proportion of time that the exchange
is full, and hence the long-run proportion of calls that are lost, is given by

πs =
(λ/µ)s

s!
/

s∑
j=0

(λ/µ)j

j!

This is known as Erlang’s formula. ·

¶ Example 3.7 (Queues in series). Suppose that customers have two ser-
vice requirements: they arrive as a Poisson process of rate λ to be seen
first by server A, and then by server B. For simplicity we shall assume
that the service times are independent exponentials of parameters α and β

respectively. What is the average queue length at B?

Let us denote the queue length at A by (Xt)t⩾0 and that by B by (Yt)t⩾0

Then (Xt)t⩾0 is simply an M/M/1 queue. If λ > α, then (Xt)t⩾0 is transient
so there is eventually always a queue at A and departures form a Poisson
process of rate α. If λ < α, then, by the reversibility argument of Example
3.5, the process of departures from A is Poisson of rate λ, provided queue
A is in equilibrium. The question about queue length at B is not precisely
formulated: it does not specify that the queues should be in equilibrium;
indeed if λ ⩾ α there is no equilibrium.

Nevertheless, we hope you will agree to treat arrivals at B as a Poisson
process of rate α ∧ λ. Then, by Example 3.4, the average queue length at
B when α ∧ λ < β, in equilibrium, is given by (α ∧ λ)/(β − (α ∧ λ)). If, on
the other hand, α∧λ > β, then (Yt)t⩾0 is transient so the queue at B grows
without limit.

·严格证明见应随考前题
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There is an equilibrium for both queues if λ < α and λ < β. The fact that
in equilibrium the output from A is Poisson greatly simplifies the analysis
of the two queues in series. For example, the average time taken by one
customer to obtain both services is given by

1

α− λ
+

1

β − λ
.
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